The rôle of cortisol and β-endorphin in the response of the immune system to weaning in lambs

1998 ◽  
Vol 66 (2) ◽  
pp. 397-402 ◽  
Author(s):  
S. M. Rhind ◽  
H. W. Reid ◽  
S. R. McMillen ◽  
G. Palmarini

AbstractThe relationship between weaning stress-induced changes in stress hormone profiles and immune function was investigated in groups of 10 lambs immunized against adrenocorticotrophic hormone (ACTH; treatment A) or fi-endorphin (treatment B) to reduce the circulating concentrations of cortisol and fi-endorphin respectively. Control animals (treatment C) were immunized against a porcine thyroglobulin carrier protein. Application of weaning stress was associated with significantly elevated plasma cortisol concentrations but no significant increase in fi-endorphin concentrations in C lambs. Immunization against ACTH suppressed the post-weaning increase in cortisol concentration. This was associated with a transient reduction in the lymphocyte stimulation response to keyhole limpet haemocyanin (KLH) antigen in the A animals but there was no effect on the antibody response or interferon-y production by antigen stimulated lymphocytes. There were no significant effects of immunization against fi-endorphin on the capacity to mount antibody or cell-mediated immune responses. It is concluded that weaning stress-induced increases in cortisol did not inhibit the immune response. Since cortisol concentrations and the cell mediated immune response at 8 days after immunization were positively associated it is concluded that these indices are not independent measures of stress.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 506
Author(s):  
José Manuel Pérez de la Lastra ◽  
Celia Andrés-Juan ◽  
Francisco J. Plou ◽  
Eduardo Pérez-Lebeña

SARS-CoV-2, the coronavirus triggering the disease COVID-19, has a catastrophic health and socioeconomic impact at a global scale. Three key factors contribute to the pathogenesis of COVID-19: excessive inflammation, immune system depression/inhibition, and a set of proinflammatory cytokines. Common to these factors, a central function of oxidative stress has been highlighted. A diversity of clinical trials focused predominantly on antioxidants are being implemented as potential therapies for COVID-19. In this study, we look at the role of zinc, glutathione, and polyphenols, as key antioxidants of possible medicinal or nutritional significance, and examine their role in the antiviral immune response induced by SARS-Cov-2. An unresolved question is why some people experience chronic COVID and others do not. Understanding the relationship between SARS-CoV-2 and the immune system, as well as the role of defective immune responses to disease development, would be essential to recognize the pathogenesis of COVID-19, the risk factors that affect the harmful consequences of the disease, and the rational design of successful therapies and vaccinations. We expect that our research will provide a novel perspective that contributes to the design of clinical or nutritional targets for the prevention of this pandemic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Heidi Makrinioti ◽  
Andrew Bush ◽  
James Gern ◽  
Sebastian Lennox Johnston ◽  
Nikolaos Papadopoulos ◽  
...  

Bronchiolitis is the most common cause of hospitalization in infancy and is associated with a higher risk for the development of childhood asthma. However, not all children hospitalized with bronchiolitis will develop asthma. The mechanisms underlying asthma development following bronchiolitis hospitalization are complex. Immune responses to respiratory viruses may underlie both bronchiolitis severity and long-term sequela (such as asthma). Interferons (IFNs) are important components of innate immune responses to respiratory viruses and could influence both asthma development and asthma exacerbations. However, the nature of the relationship between interferon production and wheezing illnesses is controversial. For example, low peripheral blood IFN responses at birth have been linked with recurrent wheeze and asthma development. In contrast, there is evidence that severe illnesses (e.g., hospitalization for bronchiolitis) are associated with increased IFN responses during acute infection (bronchiolitis hospitalization) and a higher risk for subsequent asthma diagnosis. Furthermore, mechanistic studies suggest that bronchial epithelial cells from asthmatic children have impaired IFN responses to respiratory viruses, which may enable increased viral replication followed by exaggerated secondary IFN responses. This review aims to discuss controversies around the role of IFNs as drivers of susceptibility to asthma development following bronchiolitis hospitalization. Past evidence from both mechanistic and cohort studies are discussed. We will highlight knowledge gaps that can inform future research study design.


2012 ◽  
Vol 30 (6) ◽  
pp. 500-504 ◽  
Author(s):  
Deepak Kaul ◽  
M. Sasikala ◽  
A. Raina

1995 ◽  
Vol 1995 ◽  
pp. 200-200
Author(s):  
A.M. Mackenzie ◽  
T.G. Rowan ◽  
S.D. Carter ◽  
J.B. Dixon ◽  
J. Tebble

The effects of husbandry conditions on the immune responses of suckled and bucket-reared calves has previously been reported by Mackenzie et al. (1993 a; 1993b; 1994) and there was a trend for weaning to result in decreased lymphocyte transformation test responses to mitogens along with increased humoral responses to the antigen keyhole limpet haemocyanin (KLH). Mean worker have made measurements of behavioural, endocrine and immune responses to attempt to determine the welfare status of domestic animals. However, there have been few studies where attempts have been made to measure all three parameters together. This pilot study was designed to investigate the relationship between husbandry conditions which may result in behavioural, endocrine and immune changes and to consider possible relationships in these parameters.


2019 ◽  
Vol 116 (50) ◽  
pp. 25106-25114 ◽  
Author(s):  
Wenqian Li ◽  
Jun Yan ◽  
Yan Yu

Receptors of innate immune cells function synergistically to detect pathogens and elicit appropriate immune responses. Many receptor pairs also appear “colocalized” on the membranes of phagosomes, the intracellular compartments for pathogen ingestion. However, the nature of the seemingly receptor colocalization and the role it plays in immune regulation are unclear, due to the inaccessibility of intracellular phagocytic receptors. Here, we report a geometric manipulation technique to directly probe the role of phagocytic receptor “colocalization” in innate immune regulation. Using particles with spatially patterned ligands as phagocytic targets, we can decouple the receptor pair, Dectin-1 and Toll-like receptor (TLR)2, to opposite sides on a single phagosome or bring them into nanoscale proximity without changing the overall membrane composition. We show that Dectin-1 enhances immune responses triggered predominantly by TLR2 when their centroid-to-centroid proximity is <500 nm, but this signaling synergy diminishes upon receptor segregation beyond this threshold distance. Our results demonstrate that nanoscale proximity, not necessarily colocalization, between Dectin-1 and TLR2 is required for their synergistic regulation of macrophage immune responses. This study elucidates the relationship between the spatial organization of phagocytic receptors and innate immune responses. It showcases a technique that allows spatial manipulation of receptors and their signal cross-talk on phagosomes inside living cells.


2020 ◽  
Vol 94 (9) ◽  
Author(s):  
Zhaochen Luo ◽  
Lei Lv ◽  
Yingying Li ◽  
Baokun Sui ◽  
Qiong Wu ◽  
...  

ABSTRACT Rabies, caused by rabies virus (RABV), is a fatal encephalitis in humans and other mammals, which continues to present a public health threat in most parts of the world. Our previous study demonstrated that Toll-like receptor 7 (TLR7) is essential in the induction of anti-RABV antibodies via the facilitation of germinal center formation. In the present study, we investigated the role of TLR7 in the pathogenicity of RABV in a mouse model. Using isolated plasmacytoid dendritic cells (pDCs), we demonstrated that TLR7 is an innate recognition receptor for RABV. When RABV invaded from the periphery, TLR7 detected viral single-stranded RNA and triggered immune responses that limited the virus’s entry into the central nervous system (CNS). When RABV had invaded the CNS, its detection by TLR7 led to the production of cytokines and chemokines and an increase the permeability of the blood-brain barrier. Consequently, peripheral immune cells, including pDCs, macrophages, neutrophils, and B cells infiltrated the CNS. While this immune response, triggered by TLR7, helped to clear viruses, it also increased neuroinflammation and caused immunopathology in the mouse brain. Our results demonstrate that TLR7 is an innate recognition receptor for RABV, which restricts RABV invasion into the CNS in the early stage of viral infection but also contributes to immunopathology by inducing neuroinflammation. IMPORTANCE Developing targeted treatment for RABV requires understanding the innate immune response to the virus because early virus clearance is essential for preventing the fatality when the infection has progressed to the CNS. Previous studies have revealed that TLR7 is involved in the immune response to RABV. Here, we establish that TLR7 recognizes RABV and facilitates the production of some interferon-stimulated genes. We also demonstrated that when RABV invades into the CNS, TLR7 enhances the production of inflammatory cytokines which contribute to immunopathology in the mouse brain. Taken together, our findings suggest that treatments for RABV must consider the balance between the beneficial and harmful effects of TLR7-triggered immune responses.


1995 ◽  
Vol 1995 ◽  
pp. 200-200
Author(s):  
A.M. Mackenzie ◽  
T.G. Rowan ◽  
S.D. Carter ◽  
J.B. Dixon ◽  
J. Tebble

The effects of husbandry conditions on the immune responses of suckled and bucket-reared calves has previously been reported by Mackenzie et al. (1993 a; 1993b; 1994) and there was a trend for weaning to result in decreased lymphocyte transformation test responses to mitogens along with increased humoral responses to the antigen keyhole limpet haemocyanin (KLH). Mean worker have made measurements of behavioural, endocrine and immune responses to attempt to determine the welfare status of domestic animals. However, there have been few studies where attempts have been made to measure all three parameters together. This pilot study was designed to investigate the relationship between husbandry conditions which may result in behavioural, endocrine and immune changes and to consider possible relationships in these parameters.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Guoying Wang ◽  
Xianghui Li ◽  
Lei Zhang ◽  
Abualgasim Elgaili Abdalla ◽  
Tieshan Teng ◽  
...  

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


2000 ◽  
Vol 2 (9) ◽  
pp. 1-20 ◽  
Author(s):  
Mark Harber ◽  
Anette Sundstedt ◽  
David Wraith

Current immunosuppression protocols, although often effective, are nonspecific and therefore hazardous. Consequently, immunological tolerance that is antigen specific and does not globally depress the patient's immune system has become one of the Holy Grails of immunology. Since the discovery that cytokines have immunomodulatory effects, extensive research has investigated the potential of these molecules to induce and maintain specific immunological tolerance in the context of transplantation, allergy and autoimmunity. In this article, we review the possible mechanisms by which cytokines can modulate the immune response and the animal models that frequently confound the theory that a single cytokine, or group of cytokines, can induce tolerance in a predictable manner. Finally, we discuss the role of cytokines at a paracrine level, particularly in the context of inducing and maintaining antigen-specific, regulatory T cells with the clinical potential to suppress specific immune responses.


Sign in / Sign up

Export Citation Format

Share Document