Tem Specimen Preparation for Display Materials of Vacuum Fluorescent Displays

1998 ◽  
Vol 4 (S2) ◽  
pp. 870-871
Author(s):  
T. Dolukhanyan ◽  
C. Sung ◽  
S. Ahn ◽  
J. Lee

Further development of Vacuum Fluorescent Displays (Fig.l) for low cost production and high yield requires investigation of all the components on a submicron scale at various processing stages.A variety of specimen preparation methods have been used for making different types of high quality cross-sectional and plan-view TEM specimens from:1.Initial phosphor materials - ZnCdS powders admixed with conducting powder of ln2O3;2.In2O3 mixed ZnCdS phosphor layers of ready-made working VFD;3.W - filament cathodes coated with (Ba,Sr,Ca) oxides.Rapid sharing of results.Group 1 specimens were made both by direct dispersion of phosphor powder particles on the carbon coated copper grid from acetone diluted powder suspension, and by preparation of cured bulk material from the powder using Gatan G-l epoxy, followed by cutting, grinding-dimpling and final ion milling in Gatan DuoMill 600 (Fig.2).

2014 ◽  
Vol 20 (5) ◽  
pp. 1471-1478 ◽  
Author(s):  
Esperanza Luna ◽  
Javier Grandal ◽  
Eva Gallardo ◽  
José M. Calleja ◽  
Miguel Á. Sánchez-García ◽  
...  

AbstractWe discuss observations of InN nanowires (NWs) by plan-view high-resolution transmission electron microscopy (TEM). The main difficulties arise from suitable methods available for plan-view specimen preparation. We explore different approaches and find that the best results are obtained using a refined preparation method based on the conventional procedure for plan-view TEM of thin films, specifically modified for the NW morphology. The fundamental aspects of such a preparation are the initial mechanical stabilization of the NWs and the minimization of the ion-milling process after dimpling the samples until perforation. The combined analysis by plan-view and cross-sectional TEM of the NWs allows determination of the degree of strain relaxation and reveals the formation of an unintentional shell layer (2–3-nm thick) around the InN NWs. The shell layer is composed of bcc In2O3 nanocrystals with a preferred orientation with respect to the wurtzite InN: In2O3 [111] || InN [0001] and In2O3 <110> || InN< $$ 11\bar 20 $$ >.


1987 ◽  
Vol 115 ◽  
Author(s):  
D. Bahnck ◽  
J. L. Batstone ◽  
Julia M. Phillips

ABSTRACTTechniques for the preparation of specimens for Transmission Electron Microscopy analysis are described. Cross-sectional specimens of insulator/semiconductor heterostructures have been successfully prepared. The problem of differential thinning rates and interface amorphization during argon ion-milling have been overcome using low argon ion accelerating voltages and shallow angles of incidence. Techniques for preparation of plan view specimens include the preparation of silicon substrates for in-situ crystal growth in an ultrahigh vacuum Transmission Electron Microscope.


Author(s):  
H. M. Kerch ◽  
R. A. Gerhardt

Highly porous ceramics are employed in a variety of engineering applications due to their unique mechanical, optical, and electrical characteristics. In order to achieve proper design and function, information about the pore structure must be obtained. Parameters of importance include pore size, pore volume, and size distribution, as well as pore texture and geometry. A quantitative determination of these features for high porosity materials by a microscopic technique is usually not done because artifacts introduced by either the sample preparation method or the image forming process of the microscope make interpretation difficult.Scanning electron microscopy for both fractured and polished surfaces has been utilized extensively for examining pore structures. However, there is uncertainty in distinguishing between topography and pores for the fractured specimen and sample pullout obscures the true morphology for samples that are polished. In addition, very small pores (nm range) cannot be resolved in the S.E.M. On the other hand, T.E.M. has better resolution but the specimen preparation methods involved such as powder dispersion, ion milling, and chemical etching may incur problems ranging from preferential widening of pores to partial or complete destruction of the pore network.


1991 ◽  
Vol 254 ◽  
Author(s):  
Helen L. Humiston ◽  
Bryan M. Tracy ◽  
M. Lawrence ◽  
A. Dass

AbstractAn alternative VLSI TEM specimen preparation technique has been developed to produce 100μm diameter electron transparent thin area by using a conventional dimpler with a texmet padded ‘flatting tool’ for dimpling and a microcloth padded ‘flatting tool’ for polishing, followed by low angle ion milling. The advantages of this technique are a large sampling area and shorter milling times than conventional specimen preparation methods. In the following, we report the details of the modified dimpling technique. The improvements in available electron transparency, and a decrease in ion milling time are demonstrated with the preparation of planar and cross section VLSI device samples.


2007 ◽  
Vol 15 (1) ◽  
pp. 44-45
Author(s):  
Chengyu Song

Nanowires or porous films grown on a substrate normally lack mechanical strength, and may be subject to damage during specimen preparation. When we made cross-sectional TEM specimen for this type of sample, we modified the traditional method by covering the sample with epoxy to improve the film strength, and applying single-section ion milling to protect the film from over-milling.The sample surface is first covered with G1 epoxy. We choose G1 for this application because it is relatively thick and cures at low temperature. For samples with a dense-growth of nanowires or a thick porous film, a brief moment in vacuum helps to get rid of the air bubbles in the epoxy. The glue is cured at 100 degree C for 10 minutes, until its color turns to a reddish brown. To remove the excess glue and flatten the surface, the sample is then ground and polished until the glue is less than 0.1 mm thick.


2021 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
R. Li ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract With the introduction of new materials, new device structures, and shrinking device dimensions, failure mechanisms evolve, which can make identifying defects challenging. Therefore, an accurate and controllable delayering process to target defects is desirable. We present a workflow comprised of bulk device delayering by broad Ar ion beam milling, plan view specimen preparation by focused ion beam tool, followed by site-specific delayering by concentrated Ar ion beam milling. The result is an accurately delayered device, without sample preparation-induced artifacts, that is suitable for uncovering defects during physical failure analysis.


Author(s):  
J.S. Bow ◽  
Y.C. Hung ◽  
M.J. Kim ◽  
R.W. Carpenter ◽  
W.M. Kim ◽  
...  

The cross-sectional microstructure of a (Au, TiN) thin film deposited on a (100) Si substrate without further heat treatment was studied by CTEM, HRTEM, and AEM. HTREM was performed in a Topcon 002B microscope with interpretable resolution limit of 0.18 nm, and high spatial AEM was done in a Philips 400ST field emission gun microscope at 100 kV using a Gatan 666 parallel-detection electron energy loss spectrometer. Cross-section specimens of the interface were prepared by traditional polishing and ion milling. Temperatures used in the whole process of TEM specimen preparation were below 100°C and a liquid-nitrogen-cooled cold stage was used in ion milling to prevent interaction between Au and Si.Ti was co-deposited with Au by sputtering in a nitrogen atmosphere to increase the hardness of the thin Au contact film. Fig. 1a shows the microstructure of the (Au, Ti, N)/Si contact. The features of this microstructure are very similar to the those of pure gold thin films on Si substrates annealed below the Au-Si eutectic temperature (363°C). The thin, white layer was considered to be the original Au/Si interface by Chang et al.


Author(s):  
V.P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman ◽  
A. Revcolevschi

Transmission electron microscopy (TEM), incorporating imaging, diffraction and spectrometry has contributed significantly to the understanding of the structure of crystalline interfaces. Traditionally, planar interfaces are investigated using cross-sectional views (electron beam parallel to the interface) of the specimen. However, plan-view TEM (PVTEM) has recently emerged as a viable and supplementary technique to cross-sectional TEM (XTEM). PVTEM enjoys certain definite advantages over XTEM. One important consideration is that the interface in a PV specimen is buried (sandwiched between two crystals) and is expected to be free of artefacts induced by specimen preparation procedures. Moreover, many multilayer electronic materials are amenable to PVTEM because they can be easily backthinned to electron transparency with virtually no damage to the internal interfaces. PV specimens clearly contain much larger interface area than XTEM specimens, which may be of great significance when statistics are considered. Apart from these considerations PVTEM studies can also offer specific information about the interface not always possible in XTEM. In this brief communication we report some of our results on imaging, diffraction and spectrometry of interfaces obtained by viewing the interfaces in the PV mode.


1990 ◽  
Vol 199 ◽  
Author(s):  
Kyung-ho Park

ABSTRACTA procedure for preparing cross-sectional TEM specimens by focused ion beam etching (FIB) of specific regions on an integrated circuit chip is outlined. The investigation of the morphology, structure and local chemistry of precisely selected regions of semiconductor devices becomes increasingly important since the lateral dimensions and layer thickness of device structures are continually being reduced. The standard technique of preparing specimens for TEM, whether planar or cross-sectional, cannot select particular small regions. Some techniques and a number of tools and fixtures have been proposed which allow us to prepare TEM specimen of prespecified locations in complex devices. Most of these techniques, however, are still very difficult, tedious process and time consuming.A new technique has been proposed recently involving the use of FIB. The technique ensures that the preselected area of submicron scale will be located in the electron transparent section used for TEM imaging, in preparation turn-around time of about two hours. The TEM imaging of specific contacts via hole in a VLSI chip is illustrated.


Sign in / Sign up

Export Citation Format

Share Document