scholarly journals Accurate Sub-micron Device Delayering of Plan View TEM Specimens By Ar Ion Milling

Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
R. Li ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract With the introduction of new materials, new device structures, and shrinking device dimensions, failure mechanisms evolve, which can make identifying defects challenging. Therefore, an accurate and controllable delayering process to target defects is desirable. We present a workflow comprised of bulk device delayering by broad Ar ion beam milling, plan view specimen preparation by focused ion beam tool, followed by site-specific delayering by concentrated Ar ion beam milling. The result is an accurately delayered device, without sample preparation-induced artifacts, that is suitable for uncovering defects during physical failure analysis.

2009 ◽  
Vol 15 (6) ◽  
pp. 558-563 ◽  
Author(s):  
Herman Carlo Floresca ◽  
Jangbae Jeon ◽  
Jinguo G. Wang ◽  
Moon J. Kim

AbstractWe have developed the focused ion beam (FIB) fold-out technique, for transmission electron microscopy (TEM) sample preparation in which there is no fine polishing or dimpling, thus saving turnaround time. It does not require a nanomanipulator yet is still site specific. The sample wafer is cut to shape, polished down, and then placed in a FIB system. A tab containing the area of interest is created by ion milling and then “folded out” from the bulk sample. This method also allows a plan-view of the sample by removing material below the wafer's surface film or device near the polished edge. In the final step, the sample is thinned to electron transparency, ready to be analyzed in the TEM. With both a cross section and plan-view, our technique gives microscopists a powerful tool in analyzing multiple zone axes in one TEM session. The nature of the polished sample edge also includes the ability to sample many areas, allowing the user to examine a very large device or sample. More importantly, this technique could make multiple site-specific e-beam transparent specimens in one polished sample, which is difficult to do when prepared by other methods.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


1999 ◽  
Vol 5 (S2) ◽  
pp. 914-915
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
H. Matsumoto ◽  
H. Kobayashi ◽  
H. Koike

A method for site specific characterization of the materials using a dedicated focused ion beam(FIB) system and an analytical transmission electron microscope (TEM) was developed. Needless to say, in TEM specimen preparation using FIB system, stability of a specimen is quite important. The specimen stage employed in the developed FIB system is the one designed for high resolution TEM, and the specimen drift rate of the stage is less than lnm/min. In addition, FIB-TEM compatible specimen holder which allows milling of a specimen with the FIB system and observation of the specimen with the TEM without re-loading was developed. To obtain thin specimen from the area to be characterized correctly, confirmation of the area before final milling is needed. However, observation of cross sectional view in a FIB system is recommended because it causes damage by Ga ion irradiation. To solve this problem, we used a STEM unit as a viewer of FIB milled specimen.


2006 ◽  
Vol 983 ◽  
Author(s):  
Yuhong Wu ◽  
Meng Qu ◽  
Lucille A Giannuzzi ◽  
Sanjay Sampath ◽  
Andrew Gouldstone

AbstractThermally sprayed (TS) coatings are widely used for surface engineering across a range of industries, including aerospace, infrastructure and biomedical. TS materials are formed via the successive impingement, rapid quenching and build-up of molten powder particles on a substrate. The impacted ‘splats’ are thus the fundamental microstructural constituents of the coatings, and their intrinsic properties, as well as intersplat bonding and morphology, dictate coating behavior. Beyond the obvious practical considerations, from a scientific standpoint, splats represent a fascinating template for study, due to the highly non-equilibrium processing conditions (rapid deceleration from sub-sonic velocities, million-degree/sec cooling rates). In the literature, many studies of isolated splats on substrates have been carried out, but these have focused on overall morphology (disc-shape vs fragmented). Direct observations of microstructure, in particular cross-section, are limited in the specimen preparation stage due to splat size (tens of microns in diameter, 1-2 microns in thickness). However, Focused Ion Beam (FIB) techniques have allowed this problem to be addressed in a robust manner; in this paper we will discuss such approaches to observe Ni5Al splats on stainless steel substrates. Cross-sections through the splat and the substrate were created by recourse to ion milling and the ion beam itself provided good channeling contrast for grain imaging. The typical splat microstructure with sub-micron Ni(Al) columnar grains, a chill zone at the bottom and a lift off area is observed in high detail. In addition, an amorphous aluminum oxide top layer of 100-200 nm is partially present on top of the Ni(Al) columnar grains. At the splat/substrate interface, defects such as micro- and nano-scale pores were characterized for the first time and will be discussed. These observations provide insights into splat and interface formation during the deposition process and may drastically improve our current understanding of Ni5Al splat properties.


1997 ◽  
Vol 3 (S2) ◽  
pp. 357-358
Author(s):  
C. Amy Hunt

The demand for TEM analysis in semiconductor failure analysis is rising sharply due to the shrinking size of devices. A well-prepared sample is a necessity for getting meaningful results. In the past decades, a significant amount of effort has been invested in improving sample preparation techniques for TEM specimens, especially precision cross-sectioning techniques. The most common methods of preparation are mechanical dimpling & ion milling, focused ion beam milling (FIBXTEM), and wedge mechanical polishing. Each precision XTEM technique has important advantages and limitations that must be considered for each sample.The concept for both dimpling & ion milling and wedge specimen preparation techniques is similar. Both techniques utilize mechanical polishing to remove the majority of the unwanted material, followed by ion milling to assist in final polishing or cleaning. Dimpling & ion milling produces the highest quality samples and is a relatively easy technique to master.


1997 ◽  
Vol 480 ◽  
Author(s):  
L. A. Giannuzzi ◽  
J. L. Drown ◽  
S. R. Brown ◽  
R. B. Irwin ◽  
F. A. Stevie

AbstractA site specific technique for cross-section transmission electron microscopy specimen preparation of difficult materials is presented. Focused ion beams are used to slice an electron transparent sliver of the specimen from a specific area of interest. Micromanipulation lift-out procedures are then used to transport the electron transparent specimen to a carbon coated copper grid for subsequent TEM analysis. The experimental procedures are described in detail and an example of the lift-out technique is presented.


2004 ◽  
Vol 10 (S02) ◽  
pp. 1162-1163
Author(s):  
A. Anciso ◽  
P.J. Jones ◽  
R.B. Irwin

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


1999 ◽  
Vol 5 (S2) ◽  
pp. 908-909
Author(s):  
J.L. Drown-MacDonald ◽  
B.I. Prenitzer ◽  
T.L. Shofner ◽  
L.A. Giannuzzi

Focused Ion Beam (FIB) specimen preparation for both scanning and transmission electron microscopy (SEM and TEM respectively) has seen an increase in usage over the past few years. The advantage to the FIB is that site specific cross sections (or plan view sections) may be fabricated quickly and reproducibly from numerous types of materials using a finely focused beam of Ga+ ions [1,2]. It was demonstrated by Prenitzer et al. that TEM specimens may be acquired from individual Zn powder particles by employing the FIB LO specimen preparation technique [3]. In this paper, we use the FIB LO technique to prepare TEM specimens from Mount Saint Helens volcanic ash.Volcanic ash from Mount Saint Helens was obtained at the Microscopy and Microanalysis 1998 meeting in Atlanta. TEM analysis of the ash was performed using the FIB lift out technique [1]. Ash powders were dusted onto an SEM sample stud that had been coated with silver paint.


1999 ◽  
Vol 7 (2) ◽  
pp. 12-15 ◽  
Author(s):  
Lucille A. Giannuzzi ◽  
Richard Young ◽  
Pete Carleson

AbstractDriven by the analytical needs of microelectronics, magnetic media and micro-fabrication industries, focused ion beam (FIB) systems are now capable of milling and manipulating samples for the analysis of microstructure features having dimensions of 180 nm or less, A technique for locating and extracting site specific specimens for examination by transmission electron microscopy (TEM) has been developed. An identified feature can be located and precisely milled with an FIB system from two sides to prepare an ultrathin sample, and then extracted from the region with a glass rod micromanipulator onto a grid for TEM analysis. This specimen preparation method has been applied to semiconductor failure analysis and to the study of metallic and ceramic microsiructures with irregular topographies and complex mufti-layered components.


2000 ◽  
Vol 6 (S2) ◽  
pp. 502-503
Author(s):  
B. I. Prenitzer ◽  
B. W. Kempshall ◽  
S. M. Schwarz ◽  
L. A. Giannuzzi ◽  
F. A. Stevie

Nanometer scale, high resolution Ga+ ion probes, attainable in commercially available focused ion beam (FIB) instruments, allow imaging, sputtering and deposition operations to be performed with a high degree of spatial precision. Of particular interest is how this precision milling/deposition capability has enabled a wide range of site specific micromachining and microfabrication operations (e.g., TEM, SEM, SIMS, and AUGER specimen preparation and circuit modification). The applications of FIB instruments frequently involve the creation of high aspect ratio features (i.e., deep narrow trenches). Ideally, the sidewalls of an FIB milled feature should be vertical; however, it has been generally observed that the trenches tend to exhibit a gradual sloping. The observed deviation from vertical milling has been attributed to the redeposition of sputtered material, and is especially pervasive at high beam currents and confining trench geometries. A hole milled with an FIB tends to be widest at the top surface and taper down to a point at the bottom.


Sign in / Sign up

Export Citation Format

Share Document