Effect of Calcium on Salt Tolerance of Leaf Epidermal Cells of Ruppia maritima at High Salinity

1998 ◽  
Vol 4 (S2) ◽  
pp. 1174-1175
Author(s):  
A.D. Barnabas ◽  
R. Jagels ◽  
W.J. Przybylowicz ◽  
J. Mesjasz-Przybylowicz

Ruppia maritima L. is a submerged halophyte which occurs frequently in estuaries where sodium chloride is the dominant salt. Unlike terrestrial halophytes, R. maritima does not possess any specialised salt-secreting structures such as salt glands. Knowledge of salt tolerance mechanisms in this plant is important to our understanding of its biology. In a previous study it was shown that leaf epidermal cells of R. maritima, which possess transfer cell characteristics, are implicated in salt regulation. In the present investigation, the effect of calcium (Ca) on salt tolerance of leaf epidermal cells was studied since Ca has been found to be an important factor in resistance to salt stress in terrestrial plants.Plants were grown in artificial seawater of high salinity (33%) and at two different Ca concentrations : 400 ppm (high Ca) and 100 ppm (low Ca).

2019 ◽  
Vol 46 (1) ◽  
pp. 82 ◽  
Author(s):  
Fang Yuan ◽  
Xue Liang ◽  
Ying Li ◽  
Shanshan Yin ◽  
Baoshan Wang

Limonium bicolor is a typical recretohalophyte with salt glands in the epidermis, which shows maximal growth at moderate salt concentrations (100mM NaCl) but reduced growth in the presence of excess salt (more than 200mM). Jasmonic acid (JA) alleviates the reduced growth of L. bicolor under salt stress; however, the underlying mechanism is unknown. In this study we investigated the effects of exogenous methyl jasmonate (MeJA) application on L. bicolor growth at high NaCl concentrations. We found that treatment with 300mM NaCl led to dramatic inhibition of seedling growth that was significantly alleviated by the application of 0.03mM MeJA, resulting in a biomass close to that of plants not subjected to salt stress. To determine the parameters that correlate with MeJA-induced salt tolerance (assessed as the biomass production in saline and control conditions), we measured 14 physiological parameters relating to ion contents, plasma membrane permeability, photosynthetic parameters, salt gland density, and salt secretion. We identified a correlation between individual indicators and salt tolerance: the most positively correlated indicator was net photosynthetic rate, and the most negatively correlated one was relative electrical conductivity. These findings provide insights into a possible mechanism underlying MeJA-mediated salt stress alleviation.


2018 ◽  
Author(s):  
Reza Shokri-Gharelo ◽  
Pouya Motie-Noparvar

Canola (Brassica napus L.) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as ‘salt-tolerant’, plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests where researchers should focus future studies.


2019 ◽  
Vol 14 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Fang Yuan ◽  
Yanyu Xu ◽  
Bingying Leng ◽  
Baoshan Wang

AbstractHalophytes can survive and complete their life cycle in the presence of ≥200 mM NaCl. These remarkable plants have developed various strategies to tolerate salinity and thrive in high-salt environments. At the appropriate levels, salt has a beneficial effect on the vegetative growth of halophytes but inhibits the growth of non-halophytes. In recent years, many studies have focused on elucidating the salt-tolerance mechanisms of halophytes at the molecular, physiological, and individual level. In this review, we focus on the mechanisms, from the macroscopic to the molecular, underlying the successful growth of halophytes in saline environments to explain why salt has beneficial effects on halophytes but harmful effects on non-halophytes. These mechanisms include the specialized organs of halophytes (for example, ion compartmentalization in succulent leaves), their unique structures (salt glands and hydrophobic barriers in roots), and their salt-tolerance genes. We hope to shed light on the use of halophytes for engineering salt-tolerant crops, soil conservation, and the protection of freshwater resources in the near future.


Biologia ◽  
2012 ◽  
Vol 67 (4) ◽  
Author(s):  
Mariana Reginato ◽  
Guillermina Abdala ◽  
Otto Miersch ◽  
Oscar Ruiz ◽  
Elsa Moschetti ◽  
...  

AbstractProsopis strombulifera, a common legume in high-salinity soils of Argentina, is a useful model for elucidation of salt tolerance mechanisms and specific biochemical pathways in halophytes, since its NaCl tolerance exceeds the limit described for most halophytic plants. We analyzed the effects of the increasing concentration of two main soil salts, Na2SO4 and NaCl, on growth parameters of P. strombulifera, chlorophyll levels, and content of jasmonates (JAs) and polyamines (PAs), which are key molecules involved in stress responses. P. strombulifera showed a halophytic response (growth promotion) to NaCl, but strong growth inhibition by iso-osmotic solutions of Na2SO4. Chlorophyll levels, number of leaves and leaf area were also differentially affected. An important finding was the partial alleviation of SO42− toxicity by treatment with two-salt mixture. JAs are not directly involved in salt tolerance in this species since its levels decrease under all salt treatments. Beneficial effects of Putrescine (Put) accumulation in NaCl treated plants maybe inferred probably associated with the antioxidative defense system. Another novel finding is the accumulation of the uncommon PA cadaverine in roots under high Na2SO4, which may be related to SO42− toxicity.


2020 ◽  
Vol 21 (13) ◽  
pp. 4586 ◽  
Author(s):  
Yujie Qu ◽  
Quandong Nong ◽  
Shuguang Jian ◽  
Hongfang Lu ◽  
Mingyong Zhang ◽  
...  

Pitaya (Hylocereus undatus) is a high salt-tolerant fruit, and ethylene response factors (ERFs) play important roles in transcription-regulating abiotic tolerance. To clarify the function of HuERF1 in the salt tolerance of pitaya, HuERF1 was heterogeneously expressed in Arabidopsis. HuERF1 had nuclear localization when HuERF1::GFP was expressed in Arabidopsis protoplasts and had transactivation activity when HuERF1 was expressed in yeast. The expression of HuERF1 in pitaya seedlings was significantly induced after exposure to ethylene and high salinity. Overexpression of HuERF1 in Arabidopsis conferred enhanced tolerance to salt stress, reduced the accumulation of superoxide (O2 · ¯ ) and hydrogen peroxide (H2O2), and improved antioxidant enzyme activities. These results indicate that HuERF1 is involved in ethylene-mediated salt stress tolerance, which may contribute to the salt tolerance of pitaya.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 458 ◽  
Author(s):  
Rong Wang ◽  
Xi Wang ◽  
Kuan Liu ◽  
Xue-Jie Zhang ◽  
Luo-Yan Zhang ◽  
...  

As one of the most severe environmental stresses, salt stress can cause a series of changes in plants. In salt tolerant plant Zoysia macrostachya, germination, physiology, and genetic variation under salinity have been studied previously, and the morphology and distribution of salt glands have been clarified. However, no study has investigated the transcriptome of such species under salt stress. In the present study, we compared transcriptome of Z. macrostachya under normal conditions and salt stress (300 mmol/L NaCl, 24 h) aimed to identify transcriptome responses and molecular mechanisms under salt stress in Z. macrostachya. A total of 8703 differently expressed genes (DEGs) were identified, including 4903 up-regulated and 3800 down-regulated ones. Moreover, a series of molecular processes were identified by Gene Ontology (GO) analysis, and these processes were suggested to be closely related to salt tolerance in Z. macrostachya. The identified DEGs concentrated on regulating plant growth via plant hormone signal transduction, maintaining ion homeostasis via salt secretion and osmoregulatory substance accumulation and preventing oxidative damage via increasing the activity of ROS (reactive oxygen species) scavenging system. These changes may be the most important responses of Z. macrostachya under salt stress. Some key genes related to salt stress were identified meanwhile. Collectively, our findings provided valuable insights into the molecular mechanisms and genetic underpinnings of salt tolerance in Z. macrostachya.


2020 ◽  
Author(s):  
Francisco Gil_Muñoz ◽  
Nicolas Delhomme ◽  
Ana Quiñones ◽  
Maria del Mar Naval ◽  
Maria Badenes ◽  
...  

Abstract Background Drought and salinity are two of the main challenges in agriculture. In many areas, crop production needs solutions to adapt the grown species to the increasing salinity. Research on physiological and molecular responses activated by salinity in plants is needed to elucidate mechanisms of salinity tolerance. Transcriptome profiling (RNA-Seq) is a powerful tool to study the transcriptomic profile of genotypes under stress conditions. In temperate fruit tree species, tree grafting on salinity tolerant rootstocks is a common method to compensate for the cultivar saline sensitivity. Persimmon species have different levels of tolerance to salinity, knowledge of this variability provides the basics for development of salt tolerant rootstocks.Results In this study, we conducted a physiological and transcriptomic profiling of roots and leaves in tolerant and sensitive plants of persimmon rootstock, Diospyros lotus, grown under saline and control conditions. Results from characterization of the physiological responses along with gene expression changes in roots and leaves allowed identifying several salt-tolerance mechanisms related to Ion transport and thermospermine synthesis. Differences were observed in putative H+/ATPases that allow transmembrane ionic transport and Chloride channel protein-like genes. Furthermore, an overexpression of thermospermine synthase found in the roots of tolerant plants may indicate that alterations in root architecture could act as an additional mechanism of response to salt stress. Conclusions Results indicate that D. lotus presents a genetic variability for salt tolerance trait related to the regulation of chloride transport, transmembrane electrochemical potential and thermospermine root synthesis. The study provides knowledge on mechanism of salt stress tolerance in persimmon for further breeding of tolerant persimmon rootstocks.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maryamsadat Vaziriyeganeh ◽  
Shanjida Khan ◽  
Janusz J. Zwiazek

Elevated soil salinity exacerbated by human activities and global climate change poses serious threats to plant survival. Although halophytes provide many important clues concerning salt tolerance in plants, some unanswered questions remain to be addressed, including the processes of water and solute transport regulation. We performed high-throughput RNA-sequencing in roots and metabolome characterizations in roots and leaves of Puccinellia nuttalliana halophytic grass subjected to 0 (control) and 150 mM NaCl. In RNAseq, a total of 31 Gb clean bases generated were de novo assembled into 941,894 transcripts. The PIP2;2 and HKT1;5 transcript levels increased in response to the NaCl treatment implying their roles in water and ion homeostasis. Several transcription factors, including WRKY39, DEK3, HY5, and ABF2, were also overexpressed in response to NaCl. The metabolomic analysis revealed that proline and dopamine significantly increased due to the upregulation of the pathway genes under salt stress, likely contributing to salt tolerance mechanisms. Several phosphatidylcholines significantly increased in roots suggesting that the alterations of membrane lipid composition may be an important strategy in P. nuttalliana for maintaining cellular homeostasis and membrane integrity under salt stress. In leaves, the TCA cycle was enriched suggesting enhanced energy metabolism to cope with salt stress. Other features contributing to the ability of P. nuttalliana to survive under high salinity conditions include salt secretion by the salt glands and enhanced cell wall lignification of the root cells. While most of the reported transcriptomic, metabolomics, and structural alterations may have consequences to water balance maintenance by plants under salinity stress, the key processes that need to be further addressed include the role of the changes in the aquaporin gene expression profiles in the earlier reported enhancement of the aquaporin-mediated root water transport.


Sign in / Sign up

Export Citation Format

Share Document