Newly Automated EPMA with Phase Identification System

2001 ◽  
Vol 7 (S2) ◽  
pp. 980-981
Author(s):  
S. Notoya ◽  
H. Takahashi ◽  
T. Okumura ◽  
C.H. Nielsen

We have developed a new Electron Probe Microanalyzer (EPMA), JXA-8100/8200, with improved basic capabilities such as X-ray intensities of wavelength dispersive spectrometers (WDS), imaging functions, automated functions and analysis software. Fig. 1 shows the appearance of JXA-8200, WD/ED combined microanalyzer. in this session, we report mainly on the improved imaging functions, automated functions and analysis software.The JXA-8100/8200 is the first EPMA in the world to feature 1280 x 1024 pixels high resolution live scanning image display. Regarding scanning image, two or four different signal live images, of course including X-ray images, can be displayed simultaneously. Further, image mixing is also possible to display. On the high resolution image, an operator can choose the probe position or the stage position by mouse clicking. The stage position can also be chosen on the optical microscope (OM) live image. Another new “Swing Mouse” function, which is the seamless movement of mouse pointer between the scanning image display and the computer display, has been developed.Advanced automated functions, such as autofocus, auto astigmatism and auto contrast brightness, are effective to optimize the scanning image.

2004 ◽  
Vol 19 (4) ◽  
pp. 340-346
Author(s):  
YuanYuan Qiao ◽  
YunFei Xi ◽  
DongTao Zhuo ◽  
Ji Jun Wang ◽  
ShaoFan Lin

A qualitative phase identification system for crystalline mixtures is presented. The system provides up to five-phase qualitative identification using up to nine-peak filtration, and additive full peak matching based on the powder diffraction file of ICDD. It was implemented using Microsoft Visual C++, and runs under most common Windows systems. Screenshots and examples are included.


2015 ◽  
Vol 227 ◽  
pp. 397-400
Author(s):  
Monika Gwoździk

The paper contains results of studies on the formation of oxide layers on steel long-term operated at an elevated temperature. The oxide layer was studied on a surface and a cross-section at the inner surface of the tube wall. Thorough examinations of the oxide layer carried out on the inside surface of tube wall comprised:microscopic examinations of the oxide layer were performed using an Olympus GX41 optical microscope,thickness measurements of formed oxide layers,chemical composition analysis of deposits/oxides using a Joel JSM-6610LV scanning electron microscope (SEM) working with an Oxford EDS electron microprobe X-ray analyser,X-ray (XRD) measurements; the layer was subject to measurements using a Seifert 3003T/T X-ray diffractometer and the radiation originating from a tube with a cobalt anode (λCo=0.17902 nm). X-ray studies were performed, comprising measurements in a symmetric Bragg-Brentano geometry (XRD). XRD measurements were performed in the 15÷120° range of angles with an angular step of 0.1° and the exposure time of 4 s. To interpret the results the diffractograms were described by a Pseudo Voight curve using the Analyze software. DHN PDS and PDF4+2009 computer software and crystallographic database were used for the phase identification.


2011 ◽  
Vol 695 ◽  
pp. 357-360
Author(s):  
Hui Xie ◽  
G. H. Bai ◽  
Lei Jia ◽  
Zhen Lin Lu ◽  
Sheng Zhong Kou

Bulk Fe-50at%Ni alloy melts were undercooled using cyclic superheating and glass slag purification. As a result, a maximum undercooling up to 217 K could be achieved. As-solidified microstructures were observed by means of optical microscope. Phase identification of Fe-50at%Ni alloys was performed using the Shimadzu X-ray diffractometer (XRD) system. The chemical constitution revealed using a JEOL Model JSM-6700F scanning electron microscope equipped with energy dispersive X-ray spectroscopy (EDX). The magnetic properties of the alloys were measured by vibrating sample magnetometer (VSM) with a DC M-H analyzer. The results indicated that there were twice grain refinements occurred within an undercooling range of 55-217K, where the first could be ascribed to dendrite-remelting, and the second to recrystallization. The phase composition of undercooled Fe-50at%Ni alloys comprised two phases, i.e., solid solution phases withbccandfccstructure. At various undercoolings, the saturation magnetizationMsandHcrelated closely to the measured grain sizeD, and they were in proportion toD-1by the regression analysis.


2009 ◽  
Vol 24 (2) ◽  
pp. 78-81 ◽  
Author(s):  
T. N. Blanton ◽  
C. L. Barnes ◽  
M. Holland ◽  
K. B. Kahen ◽  
S. K. Gupta ◽  
...  

ZnSe-based heterostructures grown on GaAs substrates have been investigated for use in pin-diode LED applications. In this study, a conventional Bragg-Brentano diffractometer (BBD) has been used to screen samples for phase identification, crystallite size, presence of polycrystalline ZnSe, and initial rocking curve (RC) analysis. A limitation of the conventional diffractometer is that the smallest RC full width at half maximum (FWHM) that can be achieved is 500 to 600 arc sec. As deposition parameters are optimized and the RC limit of the conventional diffractometer is reached, analysis is moved to a four-bounce high-resolution diffractometer (HRD). Although more time for analysis is required, using the HRD has a RC resolution advantage, where RCs of <20 arc sec are obtained for neat GaAs wafers. Combining the BBD and HRD instruments for analysis of ZnSe films grown on GaAs substrates allows for an efficient means of high sample throughput combined with an accurate measurement of film alignment.


2013 ◽  
Vol 21 (3) ◽  
pp. 10-15 ◽  
Author(s):  
C. Hombourger ◽  
M. Outrequin

The electron probe microanalyzer (EPMA) provides quantitative analysis for nearly all chemical elements with a spatial resolution of analysis about ~1 μm, which is relevant to microstructures in a wide variety of materials and mineral specimens. Recent implementation of the Schottky emitter field-emission gun (FEG) electron source in the EPMA has significantly improved the spatial resolution and detectability of the EPMA technique.


2017 ◽  
Vol 73 (4) ◽  
pp. 293-311 ◽  
Author(s):  
G. M. Hansford ◽  
S. M. R. Turner ◽  
P. Degryse ◽  
A. J. Shortland

It is shown that energy-dispersive X-ray diffraction (EDXRD) implemented in a back-reflection geometry is extremely insensitive to sample morphology and positioning even in a high-resolution configuration. This technique allows high-quality X-ray diffraction analysis of samples that have not been prepared and is therefore completely non-destructive. The experimental technique was implemented on beamline B18 at the Diamond Light Source synchrotron in Oxfordshire, UK. The majority of the experiments in this study were performed with pre-characterized geological materials in order to elucidate the characteristics of this novel technique and to develop the analysis methods. Results are presented that demonstrate phase identification, the derivation of precise unit-cell parameters and extraction of microstructural information on unprepared rock samples and other sample types. A particular highlight was the identification of a specific polytype of a muscovite in an unprepared mica schist sample, avoiding the time-consuming and difficult preparation steps normally required to make this type of identification. The technique was also demonstrated in application to a small number of fossil and archaeological samples. Back-reflection EDXRD implemented in a high-resolution configuration shows great potential in the crystallographic analysis of cultural heritage artefacts for the purposes of scientific research such as provenancing, as well as contributing to the formulation of conservation strategies. Possibilities for moving the technique from the synchrotron into museums are discussed. The avoidance of the need to extract samples from high-value and rare objects is a highly significant advantage, applicable also in other potential research areas such as palaeontology, and the study of meteorites and planetary materials brought to Earth by sample-return missions.


1999 ◽  
Vol 5 (S2) ◽  
pp. 544-545
Author(s):  
P. Duncumb

The early days of the electron microprobe were characterized by the variety of designs emerging from different laboratories in Europe, the United States and the USSR. Notable amongst these was that of Castaing in 1954, which employed a magnetic lens in combination with an optical microscope for viewing the sample and positioning the electron probe on the desired point for analysis. The X-ray emission was analysed by two high resolution spectrometers having their axes in the same plane as the electron-optical axis, and with their foci accurately set to coincide with the point of impact of the electron probe. This was a design well suited to point analysis by high resolution X-ray spectroscopy and formed the basis of the first Cameca instrument (Fig 1a).By contrast, work by Duncumb in the Cavendish Laboratory in Cambridge started with the object of scanning the electron probe over the sample, in order to image the surface in terms of its characteristic X-ray emission. This required a strong lens to give a high current into a finely focused electron probe (Fig. 1b). The first element maps were demonstrated in 1956, and led to the design of Cambridge Instruments’ Microscan, intended as a metallurgical instrument, in conjunction with D.A. Melford of Tube Investments Research Laboratories.Meanwhile, Long, also in Cambridge, was pioneering applications to mineralogy, and built an instrument for studying conventional slide-mounted rock samples, which could be viewed optically while analysis was in progress (Fig. 1c). This made use of a weaker probe-forming lens, with space for an inclined sample to be viewed in transmitted light. The slim design of the lens allowed it to be partially enclosed in the spectrometer, which received X-rays leaving the sample at a high angle to the surface - a benefit carried through into the Cambridge Geoscan.


Author(s):  
Robert A. Grant ◽  
Laura L. Degn ◽  
Wah Chiu ◽  
John Robinson

Proteolytic digestion of the immunoglobulin IgG with papain cleaves the molecule into an antigen binding fragment, Fab, and a compliment binding fragment, Fc. Structures of intact immunoglobulin, Fab and Fc from various sources have been solved by X-ray crystallography. Rabbit Fc can be crystallized as thin platelets suitable for high resolution electron microscopy. The structure of rabbit Fc can be expected to be similar to the known structure of human Fc, making it an ideal specimen for comparing the X-ray and electron crystallographic techniques and for the application of the molecular replacement technique to electron crystallography. Thin protein crystals embedded in ice diffract to high resolution. A low resolution image of a frozen, hydrated crystal can be expected to have a better contrast than a glucose embedded crystal due to the larger density difference between protein and ice compared to protein and glucose. For these reasons we are using an ice embedding technique to prepare the rabbit Fc crystals for molecular structure analysis by electron microscopy.


Author(s):  
G. Van Tendeloo ◽  
J. Van Landuyt ◽  
S. Amelinckx

Polytypism has been studied for a number of years and a wide variety of stacking sequences has been detected and analysed. SiC is the prototype material in this respect; see e.g. Electron microscopy under high resolution conditions when combined with x-ray measurements is a very powerful technique to elucidate the correct stacking sequence or to study polytype transformations and deviations from the ideal stacking sequence.


Sign in / Sign up

Export Citation Format

Share Document