Microprobe Design in the 1950’s - Some Examples in Europe

1999 ◽  
Vol 5 (S2) ◽  
pp. 544-545
Author(s):  
P. Duncumb

The early days of the electron microprobe were characterized by the variety of designs emerging from different laboratories in Europe, the United States and the USSR. Notable amongst these was that of Castaing in 1954, which employed a magnetic lens in combination with an optical microscope for viewing the sample and positioning the electron probe on the desired point for analysis. The X-ray emission was analysed by two high resolution spectrometers having their axes in the same plane as the electron-optical axis, and with their foci accurately set to coincide with the point of impact of the electron probe. This was a design well suited to point analysis by high resolution X-ray spectroscopy and formed the basis of the first Cameca instrument (Fig 1a).By contrast, work by Duncumb in the Cavendish Laboratory in Cambridge started with the object of scanning the electron probe over the sample, in order to image the surface in terms of its characteristic X-ray emission. This required a strong lens to give a high current into a finely focused electron probe (Fig. 1b). The first element maps were demonstrated in 1956, and led to the design of Cambridge Instruments’ Microscan, intended as a metallurgical instrument, in conjunction with D.A. Melford of Tube Investments Research Laboratories.Meanwhile, Long, also in Cambridge, was pioneering applications to mineralogy, and built an instrument for studying conventional slide-mounted rock samples, which could be viewed optically while analysis was in progress (Fig. 1c). This made use of a weaker probe-forming lens, with space for an inclined sample to be viewed in transmitted light. The slim design of the lens allowed it to be partially enclosed in the spectrometer, which received X-rays leaving the sample at a high angle to the surface - a benefit carried through into the Cambridge Geoscan.

Author(s):  
J. R. Michael

X-ray microanalysis in the analytical electron microscope (AEM) refers to a technique by which chemical composition can be determined on spatial scales of less than 10 nm. There are many factors that influence the quality of x-ray microanalysis. The minimum probe size with sufficient current for microanalysis that can be generated determines the ultimate spatial resolution of each individual microanalysis. However, it is also necessary to collect efficiently the x-rays generated. Modern high brightness field emission gun equipped AEMs can now generate probes that are less than 1 nm in diameter with high probe currents. Improving the x-ray collection solid angle of the solid state energy dispersive spectrometer (EDS) results in more efficient collection of x-ray generated by the interaction of the electron probe with the specimen, thus reducing the minimum detectability limit. The combination of decreased interaction volume due to smaller electron probe size and the increased collection efficiency due to larger solid angle of x-ray collection should enhance our ability to study interfacial segregation.


1998 ◽  
Vol 5 (3) ◽  
pp. 515-517 ◽  
Author(s):  
M. Frank ◽  
C. A. Mears ◽  
S. E. Labov ◽  
L. J. Hiller ◽  
J. B. le Grand ◽  
...  

Experimental results are presented obtained with a cryogenically cooled high-resolution X-ray spectrometer based on a 141 × 141 µm Nb-Al-Al2O3-Al-Nb superconducting tunnel junction (STJ) detector in an SR-XRF demonstration experiment. STJ detectors can operate at count rates approaching those of semiconductor detectors while still providing a significantly better energy resolution for soft X-rays. By measuring fluorescence X-rays from samples containing transition metals and low-Z elements, an FWHM energy resolution of 6–15 eV for X-rays in the energy range 180–1100 eV has been obtained. The results show that, in the near future, STJ detectors may prove very useful in XRF and microanalysis applications.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


1991 ◽  
Vol 01 (03) ◽  
pp. 251-258 ◽  
Author(s):  
M. TERASAWA

K, L, and M X-rays in the wavelengths between 6Å and 130Å generated by the bombardment of 200 keV protons and other heavy ions were measured by means of a wavelength dispersive Bragg’s spectrometer. The X-ray peak intensity was fairly high in general, while the background was very low. The technique was favorably applied to a practical analysis of several light elements (Be, B, C, N, O, and F). Use of moderate-energy heavy ions considering the wavelength selectivity in X-ray generation was effective for the element analysis. The high-resolution spectrometry in the analytical application of ion-induced X-ray generation was found to be useful for the study of fine electronic structure, e.g. satellite and hypersatellite X-ray study, and of the chemical state of materials.


2016 ◽  
Vol 23 (6) ◽  
pp. 1462-1473 ◽  
Author(s):  
Sebastian Cartier ◽  
Matias Kagias ◽  
Anna Bergamaschi ◽  
Zhentian Wang ◽  
Roberto Dinapoli ◽  
...  

MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor,e.g.inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented.


2021 ◽  
Author(s):  
Md Inzamam Ul Haque ◽  
Abhishek K Dubey ◽  
Jacob D Hinkle

Deep learning models have received much attention lately for their ability to achieve expert-level performance on the accurate automated analysis of chest X-rays. Although publicly available chest X-ray datasets include high resolution images, most models are trained on reduced size images due to limitations on GPU memory and training time. As compute capability continues to advance, it will become feasible to train large convolutional neural networks on high-resolution images. This study is based on the publicly available MIMIC-CXR-JPG dataset, comprising 377,110 high resolution chest X-ray images, and provided with 14 labels to the corresponding free-text radiology reports. We find, interestingly, that tasks that require a large receptive field are better suited to downscaled input images, and we verify this qualitatively by inspecting effective receptive fields and class activation maps of trained models. Finally, we show that stacking an ensemble across resolutions outperforms each individual learner at all input resolutions while providing interpretable scale weights, suggesting that multi-scale features are crucially important to information extraction from high-resolution chest X-rays.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S424-S425
Author(s):  
Dan Ding ◽  
Anna Stachel ◽  
Eduardo Iturrate ◽  
Michael Phillips

Abstract Background Pneumonia (PNU) is the second most common nosocomial infection in the United States and is associated with substantial morbidity and mortality. While definitions from CDC were developed to increase the reliability of surveillance data, reduce the burden of surveillance in healthcare facilities, and enhance the utility of surveillance data for improving patient safety - the algorithm is still laborious. We propose an implementation of a refined algorithm script which combines two CDC definitions with the use of natural language processing (NLP), a tool which relies on pattern matching to determine whether a condition of interest is reported as present or absent in a report, to automate PNU surveillance. Methods Using SAS v9.4 to write a query, we used a combination of National Healthcare Safety Network’s (NHSN) PNU and ventilator-associated event (VAE) definitions that use discrete fields found in electronic medical records (EMR) and trained an NLP tool to determine whether chest x-ray report was indicative of PNU (Fig1). To validate, we assessed sensitivity/specificity of NLP tool results compared with clinicians’ interpretations. Results The NLP tool was highly accurate in classifying the presence of PNU in chest x-rays. After training the NLP tool, there were only 4% discrepancies between NLP tool and clinicians interpretations of 223 x-ray reports - sensitivity 92.2% (81.1–97.8), specificity 97.1% (93.4–99.1), PPV 90.4% (79.0–96.8), NPV 97.7% (94.1–99.4). Combining the automated use of discrete EMR fields with NLP tool significantly reduces the time spent manually reviewing EMRs. A manual review for PNU without automation requires approximately 10 minutes each day per admission. With a monthly average of 2,350 adult admissions at our hospital and 16,170 patient-days for admissions with at least 2 days, the algorithm saves approximately 2,695 review hours. Conclusion The use of discrete EMR fields with an NLP tool proves to be a timelier, cost-effective yet accurate alternative to manual PNU surveillance review. By allowing an automated algorithm to review PNU, timely reports can be sent to units about individual cases. Compared with traditional CDC surveillance definitions, an automated tool allows real-time critical review for infection and prevention activities. Disclosures All authors: No reported disclosures.


2001 ◽  
Vol 7 (S2) ◽  
pp. 980-981
Author(s):  
S. Notoya ◽  
H. Takahashi ◽  
T. Okumura ◽  
C.H. Nielsen

We have developed a new Electron Probe Microanalyzer (EPMA), JXA-8100/8200, with improved basic capabilities such as X-ray intensities of wavelength dispersive spectrometers (WDS), imaging functions, automated functions and analysis software. Fig. 1 shows the appearance of JXA-8200, WD/ED combined microanalyzer. in this session, we report mainly on the improved imaging functions, automated functions and analysis software.The JXA-8100/8200 is the first EPMA in the world to feature 1280 x 1024 pixels high resolution live scanning image display. Regarding scanning image, two or four different signal live images, of course including X-ray images, can be displayed simultaneously. Further, image mixing is also possible to display. On the high resolution image, an operator can choose the probe position or the stage position by mouse clicking. The stage position can also be chosen on the optical microscope (OM) live image. Another new “Swing Mouse” function, which is the seamless movement of mouse pointer between the scanning image display and the computer display, has been developed.Advanced automated functions, such as autofocus, auto astigmatism and auto contrast brightness, are effective to optimize the scanning image.


Sign in / Sign up

Export Citation Format

Share Document