scholarly journals New Possibilities for In-Situ Electrical Characterization Of Nanosamples at Different Temperatures Combined with Simultaneous TEM Observations

2013 ◽  
Vol 19 (S2) ◽  
pp. 456-457
Author(s):  
M. Rudneva ◽  
T. Kozlova ◽  
H.W. Zandbergen

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.

AIP Advances ◽  
2014 ◽  
Vol 4 (11) ◽  
pp. 117126 ◽  
Author(s):  
L. Arzubiaga ◽  
F. Golmar ◽  
R. Llopis ◽  
F. Casanova ◽  
L. E. Hueso

2009 ◽  
Vol 419-420 ◽  
pp. 21-24
Author(s):  
Ming Chang ◽  
Chia Hung Lin ◽  
Chung Po Lin ◽  
Juti Rani Deka

With rapid expansion of nanotechnology, microminiaturization has become imperative in the field of micro/nano fabrication. A nanomanipulation system with high degrees of freedom that can perform nanomachining, nanofabrication and mechanical/electrical characterization of nanoscale objects inside a scanning electron microscope (SEM) is presented. The manipulation system consists of several individual operating units each having three linear stages and one rotational stage. The body of the manipulator is designed using the idea of superposition. Each operating unit can move in the permissible range of SEM’s vacuum chamber and can increase or decrease the number of units according to the requirement. Experiments were executed to investigate the in-situ electrical resistance of nano materials.


1994 ◽  
Vol 365 ◽  
Author(s):  
Seetharama C. Deevi ◽  
Sarojini Deevi

ABSTRACTIn-situ synthesis of a composite of MoSi2-Al2O3 was carried out by reacting a thermite mixture consisting of MoO3, Al, and Si powders. The reaction was found to be extremely fast and violent, and a diluent was required to moderate the reaction. Thermal behavior of the thermite mixture was studied using DTA at different heating rates, and DTA was interrupted at different temperatures to determine the reaction mechanism. X-ray characterization of the products obtained at different temperatures reveals that the mechanism consists of a reduction of MoO3 by Al to MoO2 followed by a simultaneous oxidation of Al to Al2O3 and synthesis reaction between reduced Mo and Si to form MoSi2. The rate determining step is found to be reduction of MoO2 by Al and oxidation of Al to Al2O3. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO3, Al, and Si such that the ratio of MoSi2 to the thermite was in the range of 60:40 to 90:10.


2010 ◽  
Vol 16 (S2) ◽  
pp. 1800-1801 ◽  
Author(s):  
K Roelofs ◽  
S Xu ◽  
G Poirier ◽  
N Yao

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


1993 ◽  
Vol 24 (4) ◽  
pp. 389-393
Author(s):  
B. Balland ◽  
R. Botton ◽  
M. Lemiti ◽  
J.C. Bureau ◽  
A. Glachant

1998 ◽  
Vol 525 ◽  
Author(s):  
A. Srivastava ◽  
H. H. Heinisch ◽  
E. Vogel ◽  
C. Parker ◽  
C. M. Osburn ◽  
...  

ABSTRACTThe quality and composition of ultra-thin 2.0 nm gate dielectrics advocated for the 0.1 μm technology regime is expected to significantly impact gate tunneling currents, P+-gate dopant depletion effects and boron penetration into the substrate in PMOSFETs. This paper presents a comparative assessment of alternative grown and deposited gate dielectrics in sub-micron fabricated devices. High quality rapid-thermal CVD oxides and oxynitrides are examined as alternatives to conventional furnace grown gate oxides. An alternative gate process using in-situ boron doped and RTCVD deposited poly-Si is explored. PMOSFETs with Leff down to 0.06 μm were fabricated using a 0.1 μm technology. Electrical characterization of fabricated devices revealed excellent control of gate-boron depletion with the in-situ gate deposition process in all devices. Boron penetration of 2.0 nm gate oxides was effectively controlled by the use of a lower temperature RTA process. The direct tunneling leakage, although significant at these thicknesses, was less than 1 mA/cm2 at Vd = −1.2 V for all dielectrics. MOSFETs with comparable drive currents and excellent junction and off-state leakages were obtained with each dielectric.


Sign in / Sign up

Export Citation Format

Share Document