Large Area and Depth-Profiling Dislocation Imaging and Strain Analysis in Si/SiGe/Si Heterostructures

2014 ◽  
Vol 20 (5) ◽  
pp. 1521-1527 ◽  
Author(s):  
Xin Chen ◽  
Daniel Zuo ◽  
Seongwon Kim ◽  
James Mabon ◽  
Mauro Sardela ◽  
...  

AbstractWe demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of ~7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the “strained” SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results.

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 853 ◽  
Author(s):  
Marco Sebastiani ◽  
Edoardo Rossi ◽  
Muhammad Zeeshan Mughal ◽  
Alessandro Benedetto ◽  
Paul Jacquet ◽  
...  

Silver-based low-emissivity (low-E) coatings are applied on architectural glazing to cost-effectively reduce heat losses, as they generally consist of dielectric/Ag/dielectric multilayer stacks, where the thin Ag layer reflects long- wavelength infrared (IR), while the dielectric layers both protect the Ag and act as an anti-reflective barrier. The architecture of the multilayer stack influences its mechanical properties and it is strongly dependent on the residual stress distribution in the stack. Residual stress evaluation by combining focused ion beam (FIB) milling and digital image correlation (DIC), using the micro-ring core configuration (FIB-DIC), offers micron-scale lateral resolution and provides information about the residual stress variation with depth, i.e., it allows depth profiling for both equibiaxial and non-equibiaxial stress distributions and hence can be effectively used to characterize low-E coatings. In this work, we propose an innovative approach to improve the depth resolution and surface sensitivity for residual stress depth profiling in the case of ultra-thin as-deposited and post-deposition annealed Si3N4/Ag/ZnO low-E coatings, by considering different fractions of area for DIC strain analysis and accordingly developing a unique influence function to maintain the sensitivity of the technique at is maximum during the calculation. Residual stress measurements performed using this novel FIB-DIC approach revealed that the individual Si3N4/ZnO layers in the multilayer stack are under different amounts of compressive stresses. The magnitude and orientation of these stresses changes significantly after heat treatment and provides a clear explanation for the observed differences in terms of scratch critical load. The results show that the proposed FIB-DIC combined-areas approach is a unique method for accurately probing non-equibiaxial residual stresses with nano-scale resolution in thin films, including multilayers.


1989 ◽  
Vol 148 ◽  
Author(s):  
J.C. Sturm ◽  
X. Xiao ◽  
P.M. Garone ◽  
P.V. Schwartz

ABSTRACTThe electron-beam-induced-current (EBIC) technique has been used to image dislocations and other defects at strained Si: Sil−xGex epitaxial interfaces and in overlying epitaxial layers grown by Limited Reaction Processing. Depending upon the bias conditions and test structure, one can distinguish between interface defects and those in overlying films. We have found that for a low density of misfit dislocations, a high quality (defect-free) overlying epitaxial layer can be grown, but for a high density of dislocations certain line defects propagate upwards in the overlying layers.


1997 ◽  
Vol 68 (6) ◽  
pp. 2357-2366 ◽  
Author(s):  
J. D. Sethian ◽  
S. P. Obenschain ◽  
K. A. Gerber ◽  
C. J. Pawley ◽  
V. Serlin ◽  
...  

2009 ◽  
Vol 1184 ◽  
Author(s):  
Thierry Conard ◽  
Kai Arstila ◽  
Thomas Hantschel ◽  
Alexis Franquet ◽  
Wilfried Vandervorst ◽  
...  

AbstractIn order to continuously improve the performances of microelectronics devices through scaling, SiO2 is being replaced by high-k materials as gate dielectric; metal gates are replacing poly-Si. This leads to increasingly more complex stacks. For future generations, the replacement of Si as a substrate by Ge and/or III/V material is also considered. This also increases the demand on the metrology tools as a thorough characterization, including composition and thickness is thus needed. Many different techniques exist for composition analysis. They usually require however large area for the analysis, complex instrumentation and can be time consuming. EDS (Energy Dispersive Spectroscopy) when coupled to Scanning Electron Microscopy (SEM) has the potential to allow fast analysis on small scale areas.In this work, we evaluate the possibilities of EDS for thin film analysis based on an intercomparison of composition analysis with different techniques. We show that using proper modeling, high quality quantitative composition and thickness of multilayers can be achieved.


1992 ◽  
Vol 263 ◽  
Author(s):  
B. Holländer ◽  
R. Butz ◽  
S. Mantl

ABSTRACTThe interdiffusion in MBE-grown Si/Si1−xGex superlattices was measured by Rutherford backscattering spectrometry. The superlattices consisted of 5 periods of 100 !A Si and 100 !A Si1−xGex layers with Ge concentrations, x, between 0.20 and 0.70. Both, asymmetrically strained superlattices, grown on Si(100), as well as symmetrically strained superlattices, grown on relaxed Si1−y.Gey buffer layers were investigated. Rapid thermal annealing in the temperature range between 900°C and 1125°C leads to significant interdiffusion between the individual layers, indicated by a decrease of the amplitudes of the backscattering spectra. Interdiffusion coefficients were deduced using a Fourier algorithm. The interdiffusion coefficients follow an Arrhenius law for a given Ge concentration. The interdiffusivity increases significantly with increasing Ge concentration.


2014 ◽  
Vol 311 ◽  
pp. 534-540 ◽  
Author(s):  
J.C. Walker ◽  
J.W. Murray ◽  
M. Nie ◽  
R.B. Cook ◽  
A.T. Clare

2002 ◽  
Vol 743 ◽  
Author(s):  
R. W. Martin ◽  
S. Dalmasso ◽  
K. P. O'Donnell ◽  
Y. Nakanishi ◽  
A. Wakahara ◽  
...  

ABSTRACTRare-earth doped GaN structures offer potential for optical devices emitting in the visible region [1,2]. We describe a study of MOVPE grown GaN-on-sapphire epilayers implanted with Europium ions, producing characteristic red emission lines between 540 and 680 nm due to intra-4f(n) electron transitions. As-implanted and subsequently annealed samples are investigated using a combination of wavelength dispersive x-ray analysis (WDX), electron microscopy, cathodoluminescence (CL) and photoluminescence (PL). WDX is shown to be a powerful technique for quantifying rare-earth concentrations in GaN, with varying electron beam voltages allowing a degree of depth profiling, further enhanced by the simultaneous collection of room temperature luminescence (CL) from the analysed region [3]. The intensities of the sharp lines observed in the luminescence spectrum are compared to the doping density (between 1014 – 1015 cm−2) and the Eu content measured by WDX, using a Eu-doped glass standard. Differences observed in the luminescence spectra produced by laser and electron beam excitation will be discussed along with the importance of the annealing conditions, which “heal” defects visible in the electron micrographs.


AIP Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 075104 ◽  
Author(s):  
Sung Tae Yoo ◽  
Byeongchan So ◽  
Hye In Lee ◽  
Okhyun Nam ◽  
Kyu Chang Park

Sign in / Sign up

Export Citation Format

Share Document