scholarly journals NONSYMMETRIC BRANCHING OF FLUID FLOWS IN 3D VESSELS

2018 ◽  
Vol 59 (4) ◽  
pp. 533-561
Author(s):  
N. C. OVENDEN ◽  
F. T. SMITH

Nonsymmetric branching flow through a three-dimensional (3D) vessel is considered at medium-to-high flow rates. The branching is from one mother vessel to two or more daughter vessels downstream, with laminar steady or unsteady conditions assumed. The inherent 3D nonsymmetry is due to the branching shapes themselves, or the differences in the end pressures in the daughter vessels, or the incident velocity profiles in the mother. Computations based on lattice-Boltzmann methodology are described first. A subsequent analysis focuses on small 3D disturbances and increased Reynolds numbers. This reduces the 3D problem to a two-dimensional one at the outer wall in all pressure-driven cases. As well as having broader implications for feeding into a network of vessels, the findings enable predictions of how much swirling motion in the cross-plane is generated in a daughter vessel downstream of a 3D branch junction, and the significant alterations provoked locally in the shear stresses and pressures at the walls. Nonuniform incident wall-shear and unsteady effects are examined. A universal asymptotic form is found for the flux change into each daughter vessel in a 3D branching of arbitrary cross-section with a thin divider.

2003 ◽  
Vol 125 (1) ◽  
pp. 38-48 ◽  
Author(s):  
J. Bale-Glickman ◽  
K. Selby ◽  
D. Saloner ◽  
O¨. Savas¸

Extensive flow studies are conducted in two carotid bifurcation flow phantoms. These phantoms exactly replicate the lumen of the plaque excised intact from two patients with severe carotid atherosclerosis. The input flow into the phantom’s common carotid artery is steady. Novel scanning techniques for flow visualization and particle image velocimetry are used. In addition, a novel boundary treatment technique is employed in velocimetry to extract first order accurate velocity gradients at walls. The data show that the flow fields are highly three-dimensional. Numerous separation and recirculation zones dominate the flow domain, except at the lowest Reynolds numbers. The separation regions are often so severe that highly directed internal jets form. At high Reynolds numbers, the flows become unsteady and chaotic, even though the input flow is steady. Flow fields have large regions of energetic flow and almost stagnant recirculation zones. These recirculation zones range in size from the full size of the arteries to zones within crevasses smaller than 1 mm. Velocity field and streamline patterns conform well to the lumen geometry. The streamlines are highly tortuous. Stagnation points correlate well with the topological features of the stenosis. Vorticity maps confirm the highly complex and three dimensional nature of the flow. Wall shear stresses at the stenoses are estimated to be on the order of 10 Pa. These studies conclusively show that the nature of the flow in the diseased bifurcation is primarily dictated by the lumen geometry.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
M. Agelin-Chaab ◽  
M. F. Tachie

Three-dimensional turbulent wall jet was investigated using a particle image velocimetry technique. Three Reynolds numbers based on the jet exit velocity and diameter of 5000, 10,000, and 20,000 were studied. Profiles of the mean velocities, turbulence intensities, and Reynolds shear stresses as well as two-point velocity correlations and proper orthogonal decomposition analyses were used to document the salient features of the wall jets. The decay and spread rates are independent of Reynolds numbers in the self-similar region. The estimated values of 1.15, 0.054, and 0.255 for the decay rate, wall-normal spread rate, and lateral spread rate, respectively, are within the range of values reported in the literature. The two-point correlation analysis showed that the inclination of the streamwise velocity correlation contours in the inner layer is 11±3 deg in the wall region, which is similar to those of canonical turbulent boundary layers. The results from the proper orthogonal decomposition indicate that low-order modes contribute more to the turbulence statistics in the self-similar region than in the developing region. The Reynolds shear stresses are the biggest benefactors of the low-order mode contribution while the wall-normal turbulence intensities are the least.


Author(s):  
Jason J. Dunn ◽  
Mark Ricklick ◽  
J. S. Kapat

Experiments were performed on two annular diffusers to characterize the flow separation along the outer wall. Both diffusers had the same fully developed inlet flow condition, however, the expansion of the two diffusers differed such that one diffuser replicated a typical compressor discharge diffuser found in a real machine while the other would create a natural separated flow along the outer wall. Both diffusers were tested at two Reynolds numbers, 5×104 and 1×105, with and without a vertical wall downstream of the exit to replicate the dump diffuser that re-directs the flow from the compressor outlet to the combustor. It was shown that the separation happens quite quickly within the diffuser after which the pressure recovery remains fairly constant. The results also further validate claims that CFD models can not accurately predict flows with high adverse pressure gradients.


2002 ◽  
Vol 124 (4) ◽  
pp. 378-387 ◽  
Author(s):  
N. Shahcheraghi ◽  
H. A. Dwyer ◽  
A. Y. Cheer ◽  
A. I. Barakat ◽  
T. Rutaganira

A three-dimensional and pulsatile blood flow in a human aortic arch and its three major branches has been studied numerically for a peak Reynolds number of 2500 and a frequency (or Womersley) parameter of 10. The simulation geometry was derived from the three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo using CAT scan imaging on a human aorta. The numerical simulations were obtained using a projection method, and a finite-volume formulation of the Navier-Stokes equations was used on a system of overset grids. Our results demonstrate that the primary flow velocity is skewed towards the inner aortic wall in the ascending aorta, but this skewness shifts to the outer wall in the descending thoracic aorta. Within the arch branches, the flow velocities were skewed to the distal walls with flow reversal along the proximal walls. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, wall shear stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. Within the branches, the shear stresses were considerably higher along the distal walls than along the proximal walls. Wall pressure was low along the inner aortic wall and high around the branches and along the outer wall in the ascending thoracic aorta. Comparison of our numerical results with the localization of early atherosclerotic lesions broadly suggests preferential development of these lesions in regions of extrema (either maxima or minima) in wall shear stress and pressure.


2012 ◽  
Vol 702 ◽  
pp. 378-402 ◽  
Author(s):  
Daniel Lanzerstorfer ◽  
Hendrik C. Kuhlmann

AbstractThe two-dimensional, incompressible flow in a plane sudden expansion is investigated numerically for a systematic variation of the geometry, covering expansion ratios (steps-to-outlet heights) from $0. 25$ to $0. 95$. By means of a three-dimensional linear stability analysis global temporal modes are scrutinized. In a symmetric expansion the primary bifurcation is stationary and two-dimensional, breaking the mirror symmetry with respect to the mid-plane. The secondary asymmetric flow experiences a secondary instability to different three-dimensional modes, depending on the expansion ratio. For a moderately asymmetric expansion only one of the two secondary flows (the connected branch) is realized at low Reynolds numbers. Since the perturbed secondary flow does not deviate much from the symmetric secondary flow, both secondary stability boundaries are very close to each other. For very small and very large expansion ratios an asymptotic behaviour is found for suitably scaled critical Reynolds numbers and wavenumbers. Representative instabilities are analysed in detail using an a posteriori energy transfer analysis to reveal the physical nature of the instabilities. Depending on the geometry, pure centrifugal and elliptical amplification processes are identified. We also find that the basic flow can become unstable due to the effects of flow deceleration, streamline convergence and high shear stresses, respectively.


2019 ◽  
Vol 396 ◽  
pp. 177-186
Author(s):  
Vinicius da Rosa Pepe ◽  
Luiz Alberto Oliveira Rocha ◽  
Flavia Schwarz Franceschini Zinani ◽  
Antonio Ferreira Miguel

This article presents the results of flows in "T" shaped duct bifurcations. The problem is to find the resistance to flow in three-dimensional (3D) structures with different homothetic relationships between sizes (diameters and lengths) of parent and daughter ducts. The method used is the Constructal Design, which is based on the Constructal Theory. The minimization of the global resistance to flow, subjected to geometric constraints of volume and area occupied by the ducts, is the key to search for optimum configurations. The flows investigated were three-dimensional, laminar, incompressible, in steady state, with uniform and constant properties. The results obtained numerically were verified via comparison with analytical results available in the literature. In this work, ranges of length and ratio of diameterss from 0.5 to 1 and 0.1 to 1, respectively, were investigated, for Reynolds numbers equal to 102 and 103. The main results indicate that the T-shaped structure with impermeable walls, agree with Hess-Murray's law.


2012 ◽  
Vol 9 (1) ◽  
pp. 142-146
Author(s):  
O.A. Solnyshkina

In this work the 3D dynamics of two immiscible liquids in unbounded domain at low Reynolds numbers is considered. The numerical method is based on the boundary element method, which is very efficient for simulation of the three-dimensional problems in infinite domains. To accelerate calculations and increase the problem size, a heterogeneous approach to parallelization of the computations on the central (CPU) and graphics (GPU) processors is applied. To accelerate the iterative solver (GMRES) and overcome the limitations associated with the size of the memory of the computation system, the software component of the matrix-vector product


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


Sign in / Sign up

Export Citation Format

Share Document