scholarly journals Subsurface scientific exploration of extraterrestrial environments (MINAR 5): analogue science, technology and education in the Boulby Mine, UK

2018 ◽  
Vol 18 (2) ◽  
pp. 157-182 ◽  
Author(s):  
Charles S. Cockell ◽  
John Holt ◽  
Jim Campbell ◽  
Harrison Groseman ◽  
Jean-Luc Josset ◽  
...  

AbstractThe deep subsurface of other planetary bodies is of special interest for robotic and human exploration. The subsurface provides access to planetary interior processes, thus yielding insights into planetary formation and evolution. On Mars, the subsurface might harbour the most habitable conditions. In the context of human exploration, the subsurface can provide refugia for habitation from extreme surface conditions. We describe the fifth Mine Analogue Research (MINAR 5) programme at 1 km depth in the Boulby Mine, UK in collaboration with Spaceward Bound NASA and the Kalam Centre, India, to test instruments and methods for the robotic and human exploration of deep environments on the Moon and Mars. The geological context in Permian evaporites provides an analogue to evaporitic materials on other planetary bodies such as Mars. A wide range of sample acquisition instruments (NASA drills, Small Planetary Impulse Tool (SPLIT) robotic hammer, universal sampling bags), analytical instruments (Raman spectroscopy, Close-Up Imager, Minion DNA sequencing technology, methane stable isotope analysis, biomolecule and metabolic life detection instruments) and environmental monitoring equipment (passive air particle sampler, particle detectors and environmental monitoring equipment) was deployed in an integrated campaign. Investigations included studying the geochemical signatures of chloride and sulphate evaporitic minerals, testing methods for life detection and planetary protection around human-tended operations, and investigations on the radiation environment of the deep subsurface. The MINAR analogue activity occurs in an active mine, showing how the development of space exploration technology can be used to contribute to addressing immediate Earth-based challenges. During the campaign, in collaboration with European Space Agency (ESA), MINAR was used for astronaut familiarization with future exploration tools and techniques. The campaign was used to develop primary and secondary school and primary to secondary transition curriculum materials on-site during the campaign which was focused on a classroom extra vehicular activity simulation.

2004 ◽  
Vol 3 (3) ◽  
pp. 265-271 ◽  
Author(s):  
D.P. Glavin ◽  
J.P. Dworkin ◽  
M. Lupisella ◽  
G. Kminek ◽  
J.D. Rummel

Chemical and microbiological studies of the impact of terrestrial contamination of the lunar surface during the Apollo missions could provide valuable data to help refine future Mars surface exploration plans and planetary protection requirements for a human mission to Mars. NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for and support a human return to the Moon, and future human exploration of Mars and other destinations. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no decontamination procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft and Apollo astronauts. These studies could also provide valuable ‘ground truth’ data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments.


Author(s):  
R. Packwood ◽  
M.W. Phaneuf ◽  
V. Weatherall ◽  
I. Bassignana

The development of specialized analytical instruments such as the SIMS, XPS, ISS etc., all with truly incredible abilities in certain areas, has given rise to the notion that electron probe microanalysis (EPMA) is an old fashioned and rather inadequate technique, and one that is of little or no use in such high technology fields as the semiconductor industry. Whilst it is true that the microprobe does not possess parts-per-billion sensitivity (ppb) or monolayer depth resolution it is also true that many times these extremes of performance are not essential and that a few tens of parts-per-million (ppm) and a few tens of nanometers depth resolution is all that is required. In fact, the microprobe may well be the second choice method for a wide range of analytical problems and even the method of choice for a few.The literature is replete with remarks that suggest the writer is confusing an SEM-EDXS combination with an instrument such as the Cameca SX-50. Even where this confusion does not exist, the literature discusses microprobe detection limits that are seldom stated to be as low as 100 ppm, whereas there are numerous element combinations for which 10-20 ppm is routinely attainable.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


2013 ◽  
Vol 117 (1197) ◽  
pp. 1075-1101 ◽  
Author(s):  
S. M. Parkes ◽  
I. Martin ◽  
M. N. Dunstan ◽  
N. Rowell ◽  
O. Dubois-Matra ◽  
...  

Abstract The use of machine vision to guide robotic spacecraft is being considered for a wide range of missions, such as planetary approach and landing, asteroid and small body sampling operations and in-orbit rendezvous and docking. Numerical simulation plays an essential role in the development and testing of such systems, which in the context of vision-guidance means that realistic sequences of navigation images are required, together with knowledge of the ground-truth camera motion. Computer generated imagery (CGI) offers a variety of benefits over real images, such as availability, cost, flexibility and knowledge of the ground truth camera motion to high precision. However, standard CGI methods developed for terrestrial applications lack the realism, fidelity and performance required for engineering simulations. In this paper, we present the results of our ongoing work to develop a suitable CGI-based test environment for spacecraft vision guidance systems. We focus on the various issues involved with image simulation, including the selection of standard CGI techniques and the adaptations required for use in space applications. We also describe our approach to integration with high-fidelity end-to-end mission simulators, and summarise a variety of European Space Agency research and development projects that used our test environment.


1996 ◽  
Author(s):  
G. E. Bingham ◽  
S. B. Brown ◽  
F. B. Salisbury ◽  
W. F. Campbell ◽  
J. G. Carman ◽  
...  

1989 ◽  
Vol 9 (6) ◽  
pp. 197-202 ◽  
Author(s):  
Christopher P. McKay ◽  
Wanda L. Davis

Author(s):  
Оксана І. Дмитрієва

The article seeks to explore the state of government regulation of transport infrastructure and to reveal its specifics in ensuring this sector efficiency in the context of economic globalization. The study suggests that the framework of legislative and strategic documents in the area of transport industry and its infrastructure development regulation should be considered at the international, national and the regional levels. The paper also provides insights to the key challenges hindering the innovative development of the transport infrastructure in Ukraine. The research findings have revealed the major gaps in the system of government regulation of the Ukrainian transport infrastructure which refer to: the absence of a single public regulatory authority in the transport sector which is empowered to perform regulatory, monitoring and the control functions; fundamental imbalances in transport infrastructure development (as to different transport categories); the lack of tax incentives for investors in infrastructure facilities; the lack of a balancing mechanism to regulate the number of operators in various transport market sectors through licensing procedures; the absence of an effective mechanism for designing appropriate pricing (tariff) policies in the transport sector focusing on the need to prevent monopolization while promoting competition in adjacent markets etc. It is argued that a strategy to eliminate the above shortcomings in government regulation practices in the area of transport infrastructure should be built through searching a balance between deregulation (decentralization) and excessive centralization in the specified sector. With the purpose of consolidating and structuring the information to ensure the efficiency of transport infrastructure development based on government intervention, the study has identified the following components of a basic government regulation toolkit which involves a wide range of organizational, regulatory, social, economic, innovative, market-based, informational and analytical instruments.


2021 ◽  
Author(s):  
Guillaume Drouen ◽  
Daniel Schertzer ◽  
Ioulia Tchiguirinskaia

<p>As cities are put under greater pressure from the threat of impacts of climate change, in particular the risk of heavier rainfall and flooding, there is a growing need to establish a hierarchical form of resilience in which critical infrastructures can become sustainable. The main difficulty is that geophysics and urban dynamics are strongly nonlinear with an associated, extreme variability over a wide range of space-time scales.</p><p>The polarimetric X-band radar at the ENPC’s campus (East of Paris) introduced a paradigm change in the prospects of environmental monitoring in Ile-de France. The radar is operated since May 2015 and has several characteristics that makes it of central importance for the environmental monitoring of the region.</p><p>Based on the radar data and other scientific mesurement tools, the platform for greater Paris was developped in participative co-creation, and in scientific collaboration with the world leader industrial in water management. As the need for data accessibility, a fast and reliable infrastructure were major requirements from the scientific community, the platform was build as a cloud-based solution. It provides scientific weather specialists, as well as water manager,  a fast and steady platform accessible from their web browser on desktop and mobile displays.</p><p>It was developped using free and open sources librairies, it is rooted on an integrated suite of modular components based on an asynchronous event-driven JavaScript runtime environment. It includes a comprehensive and (real-time) accessible database and also provides tools to analyse historical data on different time and geographic scales around the greater Paris.</p><p>The Fresnel SaaS (Sofware as a Service) cloud-based platform is an example of nowadays IT tools to dynamically enhance urban resilience. Developments are still in progress, in constant request and feedback loops from the scientific and professional world.</p>


2021 ◽  
Author(s):  
Angelo Odetti ◽  
Federica Braga ◽  
Fabio Brunetti ◽  
Massimo Caccia ◽  
Simone Marini ◽  
...  

<p>The IT-HR InnovaMare project, led by the Croatian Chamber of Economy, puts together policy instruments and key players for development of innovative technologies for the sustainable development of the Adriatic Sea (https://www.italy-croatia.eu/web/innovamare). The project aims at enhancing the cross-border cooperation among research, public and private stakeholders through creation of a Digital Innovation Hub (DIH). The goal is to increase effectiveness of innovation in underwater robotics and sensors to achieve and maintain a healthy and productive Adriatic Sea, as one of the crucial and strategic societal challenges existing at the cross-border level. Within InnovaMare, CNR ISMAR and INM institutes and OGS, in cooperation with the University of Zagreb and other project partners, contribute to developing a solution to access and monitor extremely shallow water by means of portable, modular, reconfigurable and highly maneuverable robotic vehicles. The identified vehicle is SWAMP, an innovative highly modular catamaran ASV recently developed by CNR-INM. SWAMP is characterised by small size, low draft, new materials, azimuth propulsion system for shallow waters and modular WiFi-based hardware&software architecture. Two SWAMP vehicles will be enhanced with a series of kits, tools and sensors to perform a series of strategic actions in the environmental monitoring of the Venice Lagoon: <br>i) An air-cushion-system-kit will be designed and developed. The vehicle will become a side-wall air-cushion-vehicle with reduction of drag and increase in speed. This will also increase the payload with a reduction of draft. <br>ii) An intelligent winch kit with a communication cable for the management of underwater sensors and tools.<br>iii) A GPS-RTK kit for highly accurate positioning in the range of centimeters.<br>iv) An Autonomous programmable device for image acquisition and processing based on the Guard1 camera. This camera acquires images content and, by means of a supervised machine learning approach, recognises/classifies features such as fish, zooplankton, seabed, infrastructures. The system is conceived for autonomous monitoring activities extended in time in fixed or mobile platforms.<br>v) A Multibeam Echo-sounder (MBES) coupled with an IMU (for pitch-roll compensation). MBES data can be used, also coupled with Cameras Imagery, through image-detection techniques for reconstruction and comprehensive knowledge of underwater environment and infrastructures. Possible analyses in coastal areas are: seabed mapping also for cultural heritage, offshore structures and resources and monitoring of biodiversity, hydrocarbon, marine litter, pollution.<br>vi) An underwater Radiometer for multiple analysis: temporal dynamics of optical properties of water; temporal dynamics of water turbidity from water reflectance; submerged vegetation and water depth mapping in optically shallow water; produce reference data for validation of satellite data.<br>vii) Automatic Nutrient Analyzer for real-time nutrient monitoring. This sensor measures nitrate with high accuracy over a wide range of environmental conditions (including extremely turbid and high CDOM conditions), from blue-ocean nitraclines to storm runoff in rivers and streams. <br>The final result of this pilot action is the creation of an innovative prototype platform for sea environmental monitoring. This will be validated through the analysis of results and draw up of guidelines for the improvement of underwater conditions.</p>


Author(s):  
Sophie Gruber

The human exploration of planetary bodies started with the Apollo missions to the Moon, which provided valuable lessons learned and experience for the future human exploration. Based on that, the design of hardware and operations need to further be developed to also overcome the new challenges, which arise when planning crewed missions to Mars and beyond. This chapter provides an overview about the environment and structure of the Red Planet and discusses the challenges on operations and hardware correlated to it. It further provides insights into the considerations regarding the hardware development which need to be investigated and defined before launching a crewed mission to Mars.


Sign in / Sign up

Export Citation Format

Share Document