Can wild lentil genotypes help improve water use and transpiration efficiency in cultivated lentil?

2018 ◽  
Vol 16 (5) ◽  
pp. 459-468 ◽  
Author(s):  
Linda Yuya Gorim ◽  
Albert Vandenberg

AbstractClimate change forecasts point to increased frequency of droughts which may affect plant growth. For protein crops such as lentil, genetic improvement of both water use and drought tolerance is necessary. Wild lentil species are known to have evolved in drought prone areas and can be introgressed into cultivated lentil, making them candidates for the evaluation of high transpiration efficiency (TE) and drought tolerance. We assessed TE, water use and drought tolerance at the plant level for five wild lentil species and in cultivated lentil. Under fully watered and moderate drought conditions, wild lentil genotypes consumed significantly less water to fix similar or more dry matter compared with their cultivated counterparts. Under severe drought conditions, the wild lentil genotype L. ervoides IG 72815 had significantly higher TE compared with L. culinaris Eston. Lens ervoides L-01-827A, had significantly higher yield compared with all other species in the presence or absence of drought and showed significantly higher (α = 5%) TE under moderate drought. Drought susceptibility index was identified as a tool to identify drought-tolerant lentil genotypes grown under severe drought. The numerous small seeds of wild lentil made it difficult to estimate drought indices that are weight based and require formulae that incorporate seed numbers.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsayed Mansour ◽  
Hany A. M. Mahgoub ◽  
Samir A. Mahgoub ◽  
El-Sayed E. A. El-Sobky ◽  
Mohamed I. Abdul-Hamid ◽  
...  

AbstractWater deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
M. P. Akhtar ◽  
Firoz Alam Faroque ◽  
L. B. Roy ◽  
Mohd. Rizwanullah ◽  
Mukesh Didwania

This paper analyzes the historical rainfall characterization and drought conditions in two major southern states of India, namely, Tamil Nadu and Karnataka, through estimation of meteorological drought indices, namely, drought index (DI), Palmer drought index (PDI), and standardized precipitation index (SPI). Monthly and yearly rainfall data, including temperature, have been considered for 110 years. Deficient rainfall conditions have been identified and compared using annual rainfall classification thresholds. Annual rainfall variability and trend have been estimated using Mann–Kendall test and Sen’s slope test. Comparative study on results implies that drought characterization using SPI may amply facilitate the standardization of threshold classification for severity and frequency. Based on threshold classification, it is found that Tamil Nadu witnessed on an average 11 years of moderate drought, 4.36 years of severe drought, and 1.32 years of extreme drought conditions with standard deviations of 4.28, 1.87, and 1.63 years, respectively, during the study period, whereas Karnataka witnessed on an average 9.74 years of moderate drought, 3.91 years of severe drought, and 2.30 years of extreme drought conditions with standard deviations of 4.54, 2.04, and 2.21 years, respectively, during the study period. According to the analysis, drought vulnerability in Tamil Nadu was higher than in Karnataka, based on the number of dry and wet years in terms of SPI threshold values and area covered over 110 years. Karnataka was more susceptible in terms of severity. When compared with other indices, analysis based on drought indices indicates that a single variable-based estimation using SPI is easy to assess and may be significant and definitive in terms of decision making for prioritizing drought mitigation measures in the study area in case of inadequate available data for multiple variable-based drought analysis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dario Mantovani ◽  
Maik Veste ◽  
Dirk Freese

Black locust (Robinia pseudoacaciaL.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L−1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land.


2021 ◽  
Vol 19 (1) ◽  
pp. 7-12
Author(s):  
B. Arnaoudov ◽  
H. Boteva ◽  
Y. Arnaoudova Y. Arnaoudova

The aim of the study is to select pepper genotypes with increased drought tolerance based on an economic assessment of productivity in conditions of water deficit. The experiments were conducted during 2018-2019 in glasshouse Venlo type in the MVCRI. Two variants of irrigation regime are applied: 100% irrigation norm and 50% irrigation norm according to the technology adopted for this production in eight pepper (Capsicum annuum L.) genotypes - lines № 1966, 1917, 1931, 1936, 1928, 1930, C41 and C45, which were cultivated as a substrate culture (PE bag 16 L) without heating. In assessing the economic indicators in greenhouse production of pepper in order to select drought-tolerant genotypes of pepper according to the summary indicator rate of return with the highest economic effect of drought achieved with reduced to 50% irrigation regime are distinguished lines № 1928, № 1966 and № 1931.


2018 ◽  
Vol 10 (3) ◽  
pp. 439-446
Author(s):  
Irfan ERDEMCI

Among abiotic stresses, drought is undoubtedly one of the most important ones, that have great impact on crop growth and productivity worldwide. Therefore, identifying of plants' performance against drought stress and estimating drought tolerance become a necessary part of the breeding phase. The main purpose of the present study was to investigate the effect of several indices that combine drought tolerance and high yield potential in chickpea. The trials were conducted under both stressed and no-stressed environments for two growing seasons (2015/2016-2016/2017) in Southeast Anatolia Region of Turkey. Varyans analysis results showed that there were significant differences among genotypes regarding Yp, Ys, MP, MRP, GMP, REI, STI, MISTIk 1, MISTIk 2, HM, YI, PI, ATI, SNPI and RDY. The genotypes FLIP09-51C, FLIP97-503C and FLIP06-97C had high yield under non-stressed condition, while the genotypes FLIP09-51C, FLIP06-97C and ‘Aksu’ displayed high amount under stressed condition. Thus, the genotypes FLIP09-51C and FLIP06-97C were found as good candidates for commercial recommendation in both conditions. Spearman rank correlation matrix showed that drought indices were significantly related to each other. The yields in stress and no-stress conditions (Yp and Ys) showed a significant and positive correlation with MP, MRP, GMP, REI, STI, MSTIK1, MSTIK2 and HM and showed a negative correlation with PI and RDY. As a result, it has been found that MISTIK2, DI, HM, STI and YI can be used as optimal indicators for screening drought-tolerant genotypes, while FLIP09-51C, FLIP06-97C, EN934 and ‘Aksu’ varieties have been the most tolerant genotypes in terms of these indices examined in study.


2021 ◽  
Vol 22 (11) ◽  
pp. 5517
Author(s):  
Xin Jia ◽  
Xiaoqing Gong ◽  
Xumei Jia ◽  
Xianpeng Li ◽  
Yu Wang ◽  
...  

Water deficit adversely affects apple (Malus domestica) productivity on the Loess Plateau. Autophagy plays a key role in plant responses to unfavorable environmental conditions. Previously, we demonstrated that a core apple autophagy-related protein, MdATG8i, was responsive to various stresses at the transcript level. Here, we investigated the function of this gene in the response of apple to severe drought and found that its overexpression (OE) significantly enhanced drought tolerance. Under drought conditions, MdATG8iOE apple plants exhibited less drought-related damage and maintained higher photosynthetic capacities compared with the wild type (WT). The accumulation of ROS (reactive oxygen species) was lower in OE plants under drought stress and was accompanied by higher activities of antioxidant enzymes. Besides, OE plants accumulated lower amounts of insoluble or oxidized proteins but greater amounts of amino acids and flavonoid under severe drought stress, probably due to their enhanced autophagic activities. Particularly, MdATG8iOE plants showed higher root hydraulic conductivity than WT plants did under drought conditions, indicating the enhanced ability of water uptake. In summary, the overexpression of MdATG8i alleviated oxidative damage, modulated amino acid metabolism and flavonoid synthesis, and improved root water uptake, ultimately contributing to enhanced drought tolerance in apple.


2021 ◽  
Vol 17 (AAEBSSD) ◽  
pp. 245-251
Author(s):  
P. Venkata Ramana Rao ◽  
M. Girija Rani ◽  
K.S.N. Prasad ◽  
P. Naga Kumari ◽  
B.N.V.S.R. Ravi Kumar ◽  
...  

Drought is the largest abiotic constraint to rice production which cause significant yield loss depending upon the severity. Development of rice varieties with tolerance to drought and high use water use efficiency is the need of the hour. Despite the importance of drought as major abiotic constraint, the efforts to develop drought tolerant rice varieties are very low. Breeding efforts until recent past were focused on understanding and improvement of secondary traits that are putatively associated with drought tolerance. However, the genetic gain in yield by improvement of secondary traits is very low. Hence, improvement of yield per se under drought conditions will be better solution. Introgression of yield QTLs under drought in the genetic background of high yielding varieties will be helpful to overcome the problem to a certain extent. In the present study, 31 advanced back cross lines (BILs) derived from drought susceptible mega variety Samba Mahsuri (BT 5204) and a drought tolerant tolerant land race Azucena were evaluated under drought. Thirty one advanced back cross inbred lines (BC2F4) lines having yield QTLs viz., qDTY3.1 on chromosome 3 and qDTY2.1 on chromosome 2 were phenotyped under drought conditions. The results suggested that wide range of variation was observed for yield and its component traits in the BILs generated in the background of BPT 5204 and direct selection for yield under water stress coupled with marker assisted screening would help in development of drought tolerant version of mega varieties with improved yield under stress. Thermo tolerance studies indicated that high variability was observed for the BILs in terms of % seedling survival, % reduction in root and shoot growth under stress.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6513 ◽  
Author(s):  
Zi-qi Ye ◽  
Jian-ming Wang ◽  
Wen-juan Wang ◽  
Tian-han Zhang ◽  
Jing-wen Li

Background Deep roots are critical for the survival of Populus euphratica seedlings on the floodplains of arid regions where they easily suffer drought stress. Drought typically suppresses root growth, but P. euphratica seedlings can adjust phenotypically in terms of root-shoot allocation and root architecture and morphology, thus promoting deep rooting. However, the root phenotypic changes undertaken by P. euphratica seedlings as a deep rooting strategy under drought conditions remain unknown. Methods We quantified deep rooting capacity by the relative root depth (RRD), which represents the ratio of taproot length to plant biomass and is controlled by root mass fraction (RMF), taproot mass fraction (TRMF), and specific taproot length (STRL). We recorded phenotypic changes in one-year-old P. euphratica seedlings under control, moderate and severe drought stress treatments and assessed the effects of RMF, TRMF, and STRL on RRD. Results Drought significantly decreased absolute root depth but substantially increased RRD via exerting positive effects on TRMF, RMF, and STRL. Under moderate drought, TRMF contributed 55%, RMF 27%, and STRL 18% to RRD variation. Under severe drought, the contribution of RMF to RRD variation increased to 37%, which was similar to the 41% for TRMF. The contribution of STRL slightly increased to 22%. Conclusion These results suggest that the adjustments in root architecture and root-shoot allocation were predominantly responsible for deep rooting in P. euphratica seedlings under drought conditions, while morphological changes played a minor role. Moreover, P. euphratica seedlings rely mostly on adjusting their root architecture to maintain root depth under moderate drought conditions, whereas root-shoot allocation responds more strongly under severe drought conditions, to the point where it plays a role as important as root architecture does on deep rooting.


2021 ◽  
Vol 12 ◽  
Author(s):  
Omkar Maharudra Limbalkar ◽  
Rajendra Singh ◽  
Parvesh Kumar ◽  
Joghee Nanjundan ◽  
Chiter Mal Parihar ◽  
...  

Among Brassica species, Ethiopian mustard (Brassica carinata A. Braun) is known to tolerate most abiotic stresses, including drought. Drought caused by low and erratic rainfall in semi-arid regions consistently challenges rapeseed mustard productivity. Development of B. carinata-derived lines (CDLs) in Brassica juncea (L.) Czern. nuclear background, carrying genomic segments from B. carinata, are expected to tolerate moisture deficit stress conditions. The present study was, thus, aimed to establish the phenomenon “heterosis” for drought tolerance and water use efficiency by evaluating 105 hybrids developed from intermating 15 CDLs in half diallel fashion. Data on 17 seed yield and yield contributing traits were recorded under two different environments, viz., irrigated and rainfed conditions. Traits under study were found to be governed by both additive and non-additive types of gene action. Average degree of dominance was higher (>2) for yield and yield contributing traits, viz., secondary branches/plant, point to first siliqua on main shoot, total siliquae/plant, 1,000-seed weight, seed yield/plant, biological yield, harvest index, and seed yield/hectare under rainfed conditions, clearly indicating that higher productivity under drought conditions can be realised through the development of hybrids. Out of 15, highly significant general combining ability (GCA) effects for seven CDLs were observed under rainfed condition. Furthermore, nine and six hybrids expressed highly significant specific combining ability (SCA) effects and > 50% heterobeltiosis for yield contributing traits under rainfed and irrigated conditions, respectively. Water use efficiency (WUE) of parental CDLs and hybrids varied from 2.05 to 2.57 kg m–3 under rainfed, while 1.10 to 1.28 kg m–3 under irrigated conditions. Hybrids expressed higher WUE than parental lines under both water regimes. Furthermore, selection indices such as drought tolerance index (DTI) and mean relative performance (MRP) were identified to be efficient in the selection of productive CDLs and hybrids under drought conditions. Nine hybrids, identified as highly productive in the present study, can further be exploited for improving the yield of Indian mustard in drought-prone areas. Usefulness of interspecific hybridisation in the development of B. carinata-derived B. juncea lines for improving heterosis and WUE is, thus, well demonstrated through the present study.


Sign in / Sign up

Export Citation Format

Share Document