scholarly journals Rapid Cross-Section TEM Specimen Preparation of III-V Materials

2003 ◽  
Vol 11 (1) ◽  
pp. 29-32 ◽  
Author(s):  
R. Beanland

AbstractCross-section transmission electron microscope (TEM) specimen preparation of Ill-V materials using conventional methods can be a painful and time-consuming activity, with a day or more from receipt of a sample to examination in the TEM being the norm. This article describes the cross-section TEM specimen preparation technique used at Bookham Caswell. The usual time from start to finish is <1 hour. Up to 10 samples can be prepared at once, depending upon sample type. Most of the tools used are widely available and inexpensive, making the technique ideal for use in institutions with limited resources.

1991 ◽  
Vol 254 ◽  
Author(s):  
L. A. Giannuzzi ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bidter

AbstractA preparation technique for the production of cross-sectional transmission electron microscope (TEM) samples from the interdiffusion regions of Fe-Zn binary couples is described. To alleviate the problem of unequal ion milling rates between the Fe and Zn, a 0.75mm thick Fe sheet has been double plated with a thick electrodeposited Zn coating to achieve a total couple thickness of ˜3mm. After slicing the couple in cross-section, the Fe region of the sample is dimpled to perforation near the Fe-Zn interface. Final thinning for TEM analysis is obtained by ion milling using a liquid nitrogen cold stage and sector speed control. The ion milling procedure is stopped when the perforated hole in the Fe-side of the couple extends through the faster eroding Zn-side of the interface. This technique, in modified form, is expected to be suitable for commercial steels coated with Zn-based alloys.


2019 ◽  
Vol 88 (3) ◽  
pp. 30102
Author(s):  
Tamila Anutgan ◽  
Mustafa Anutgan ◽  
İsmail Atilgan

We report for the first time a direct transmission electron microscope (TEM) imaging of a cross-section of a silicon nitride-based light emitting diode (LED), produced via a method patented by our research group. Grown by plasma enhanced chemical vapor deposition (PECVD) technique the LED structure (glass/Cr/p+-nc-Si:H/i-SiNx:H/n+-nc-Si:H/ITO) was then subjected to a high forward voltage stress for one time only, i.e. electroforming process. After electroforming the LED exhibited a boosted visible light emission and memory effect. To study the structural effect of the electroforming on the as-deposited LED the cross-section was extracted by focused ion beam (FIB) technique directly from the electroformed diode and thus prepared for TEM imaging. Since the electroforming process caused crystallization of ITO and its breakup in some parts of the diode surface, the FIB was conducted for the cross-section containing some regions with ITO layer and some without ITO. TEM examination revealed the nanocrystalline phase formation within the intrinsic layer (i-SiNx:H) caused by the electroforming process. The average size and distribution of Si nanocrystallites formed inside i-SiNx:H was determined. The Si nanocrystallization within i-SiNx:H was compared for the regions with and without ITO layer. The previously proposed model describing the changes taken place in the diode during electroforming process was reconsidered in the light of this TEM analysis.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


2011 ◽  
Vol 17 (6) ◽  
pp. 889-895 ◽  
Author(s):  
Lynne M. Gignac ◽  
Surbhi Mittal ◽  
Sarunya Bangsaruntip ◽  
Guy M. Cohen ◽  
Jeffrey W. Sleight

AbstractThe ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.


1998 ◽  
Vol 4 (S2) ◽  
pp. 856-857
Author(s):  
David M. Longo ◽  
James M. Howe ◽  
William C. Johnson

The focused ion beam (FIB) has become an indispensable tool for a variety of applications in materials science, including that of specimen preparation for the transmission electron microscope (TEM). Several FIB specimen preparation techniques have been developed, but some problems result when FIB specimens are analyzed in the TEM. One of these is X-ray fluorescence from bulk material surrounding the thin membrane in FIB-prepared samples. This paper reports on a new FIB specimen preparation method which was devised for the reduction of X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) in the TEM.Figure 1 shows three membrane geometries that were investigated in this study on a single-crystal Si substrate with a RF sputter-deposited 50 nm Ni film. Membrane 1 is the most commonly reported geometry in the literature, with an approximately 20 urn wide trench and a membrane having a single wedge with a 1.5° incline.


1994 ◽  
Vol 65 (20) ◽  
pp. 2553-2555 ◽  
Author(s):  
Takayuki Shibata ◽  
Atsushi Ono ◽  
Kenji Kurihara ◽  
Eiji Makino ◽  
Masayuki Ikeda

Sign in / Sign up

Export Citation Format

Share Document