scholarly journals De-protonation of Nickel Hydroxide by 200 kV Electron Irradiation

2021 ◽  
Vol 29 (6) ◽  
pp. 26-29
Author(s):  
Graham J.C. Carpenter ◽  
Zbigniew S. Wronski

Abstract:Previous studies of nickel hydroxide (Ni(OH)2) powders have shown that either heating or mechanical grinding can result in complete de-hydroxylation, leading to conversion to nickel oxide (NiO). In both cases, this process appears to occur in one stage, without evidence for any intermediate compounds being formed. During studies of Ni(OH)2 powders for applications in the positive electrodes of Ni metal hydride (NiMH) rechargeable batteries, using transmission electron microscopy (TEM), we have observed significant changes caused by exposure to the highly energetic electron beam used for imaging and analysis. It is shown here, using electron energy-loss spectroscopy (EELS), that de-hydroxylation under electron irradiation occurs in two stages, with nickel oxy-hydroxide (NiOOH) being formed at the intermediate stage.

2019 ◽  
Vol 10 ◽  
pp. 1434-1442 ◽  
Author(s):  
Hong-long Shi ◽  
Bin Zou ◽  
Zi-an Li ◽  
Min-ting Luo ◽  
Wen-zhong Wang

The prominent role of oxygen vacancies in the photocatalytic performance of bismuth tungsten oxides is well recognized, while the underlying formation mechanisms remain poorly understood. Here, we use the transmission electron microscopy to investigate the formation of oxygen vacancies and the structural evolution of Bi2WO6 under in situ electron irradiation. Our experimental results reveal that under 200 keV electron irradiation, the breaking of relatively weak Bi–O bonds leads to the formation of oxygen vacancies in Bi2WO6. With prolonged electron irradiation, the reduced Bi cations tend to form Bi clusters on the nanoflake surfaces, and the oxygen atoms are released from the nanoflakes, while the W–O networks reconstruct to form WO3. A possible mechanism that accounts for the observed processes of Bi cluster formation and oxygen release under energetic electron irradiation is also discussed.


2004 ◽  
Vol 10 (1) ◽  
pp. 86-95 ◽  
Author(s):  
Michael A. O'Keefe ◽  
Yang Shao-Horn

John Cowley and his group at Arizona State University pioneered the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4 Å resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Ångstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen, and nitrogen) that are present in many complex structures. By using sub-Ångstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Ångstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Christopher Hobbs ◽  
Clive Downing ◽  
Sonia Jaskaniec ◽  
Valeria Nicolosi

AbstractElectron irradiation of Ni–Fe layered double hydroxides (LDHs) was investigated in the transmission electron microscope (TEM). The initial structure possessed a flat hexagonal morphology made up of crystalline domains with a well-defined hexagonal crystal structure. The Ni–Fe LDHs were susceptible to significant structural decompositions during electron irradiation. The generation of pores and crystallographic breakdown of the LDH routinely occurred. In addition, a compositional change was established by electron energy loss spectroscopy (EELS). During 300 kV irradiation, a pre-peak evolution in the oxygen K edge highlighted a transition to metal oxide species. In parallel, nitrogen K edge attenuation demonstrated interlayer mass-losses. It was found that TEM conditions profoundly affected the decomposition behaviours. At lower acceleration voltages, an increased dehydration rate of the LDH cationic layers is observed during irradiaton. Moreover, in situ specimen cooling revealed the retention of interlayer nitrates. An emphasis on the dehydroxylation processes and anionic mass-loss facilitation is discussed.


Author(s):  
Dennis Maher ◽  
David Joy ◽  
Peggy Mochel

A variety of standard specimens is needed in order to systematically investigate the instrumentation, specimen, data reduction and quantitation variables in electron energy-loss spectroscopy (EELS). Pure single element specimens (e.g. various forms of carbon) have received considerable attention to date but certain elements of interest cannot be prepared directly as thin films. Since studies of the first and second row elements in two- or multicomponent systems will be of considerable importance in microanalysis using EELS, there is a need for convenient standards containing these species. For many investigations a standard should contain the desired element, or elements, homogeneously dispersed through a suitable matrix and at an accurately known concentration. These conditions may be met by the technique of implantation.Silicon was chosen as the host lattice since its principal ionization energies, EL23 = 98 eV and Ek = 1843 eV, are well removed from the K-edges of most elements of major interest such as boron (Ek = 188 eV), carbon (Ek = 283 eV), nitrogen (Ek = 400 eV) and oxygen (Ek = 532 eV).


Author(s):  
L.E. Murr

The production of void lattices in metals as a result of displacement damage associated with high energy and heavy ion bombardment is now well documented. More recently, Murr has shown that a void lattice can be developed in natural (colored) fluorites observed in the transmission electron microscope. These were the first observations of a void lattice in an irradiated nonmetal, and the first, direct observations of color-center aggregates. Clinard, et al. have also recently observed a void lattice (described as a high density of aligned "pores") in neutron irradiated Al2O3 and Y2O3. In this latter work, itwas pointed out that in order that a cavity be formed,a near-stoichiometric ratio of cation and anion vacancies must aggregate. It was reasoned that two other alternatives to explain the pores were cation metal colloids and highpressure anion gas bubbles.Evans has proposed that void lattices result from the presence of a pre-existing impurity lattice, and predicted that the formation of a void lattice should restrict swelling in irradiated materials because it represents a state of saturation.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
R. W. Ditchfield ◽  
A. G. Cullis

An energy analyzing transmission electron microscope of the Möllenstedt type was used to measure the electron energy loss spectra given by various layer structures to a spatial resolution of 100Å. The technique is an important, method of microanalysis and has been used to identify secondary phases in alloys and impurity particles incorporated into epitaxial Si films.Layers Formed by the Epitaxial Growth of Ge on Si Substrates Following studies of the epitaxial growth of Ge on (111) Si substrates by vacuum evaporation, it was important to investigate the possible mixing of these two elements in the grown layers. These layers consisted of separate growth centres which were often triangular and oriented in the same sense, as shown in Fig. 1.


Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.


Author(s):  
E Y. Wang ◽  
J. T. Cherian ◽  
A. Madsen ◽  
R. M. Fisher

Many steel parts are electro-plated with chromium to protect them against corrosion and to improve their wear-resistance. Good adhesion of the chrome plate to the steel surface, which is essential for long term durability of the part, is extremely dependent on surface preparation prior to plating. Recently, McDonnell Douglas developed a new pre-treatment method for chrome plating in which the steel is anodically etched in a sulfuric acid and hydrofluoric acid solution. On carbon steel surfaces, this anodic pre-treatment produces a dark, loosely adhering material that is commonly called the “smut” layer. On stainless steels and nickel alloys, the surface is only darkened by the anodic pre-treatment and little residue is produced. Anodic pre-treatment prior to hard chrome plating results in much better adherence to both carbon and alloy steels.We have characterized the anodic pre-treated steel surface and the resulting “smut” layer using various techniques including electron spectroscopy for chemical analysis (ESCA) on bulk samples and transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) on stripped films.


Sign in / Sign up

Export Citation Format

Share Document