Flame Stability Analysis of Turbulent Non-Premixed Reacting Flow in a Simulated Solid-Fuel Ramjet Combustor

2002 ◽  
Vol 18 (1) ◽  
pp. 43-51 ◽  
Author(s):  
Tong-Miin Liou ◽  
Po-Wen Hwang ◽  
Yi-Chen Li ◽  
Chia-Yen Chan

ABSTRACTTo investigate the flame stability in a solid-fuel ramjet combustor, time-accurate calculations using a compressible flow solver with a modified Godunov flux-splitting scheme have been performed on high Reynolds number turbulent non-premixed reacting flows over a backward-facing step with mass bleed on one wall. The combustion process considered was a one-step, irreversible, and finite rate chemical reaction. The numerical results for reacting flows show that the two-dimensional (2-D) simulations can provide reasonable predictions on the dimensionless particle number decay rate and residence time in the flame holding recirculation zone, evolutions of both axial and transverse mean velocity profiles, and critical characteristic exhaust velocity separating the sustained combustion from the non-sustained combustion. In addition to the validation of 2-D reacting flow calculations, two- and three-dimensionally computed mean-velocity profiles are compared with existing experimental data for isothermal flows to check the suitability of 2-D simulations on capturing the large-scale mean flows.

Author(s):  
Kun Luo ◽  
Jianren Fan ◽  
Kefa Cen

A direct numerical simulation technique combined with a two-way coupling method was developed to study a gas–solid turbulent jet with a moderately high Reynolds number. The flow was weakly compressible and spatially developing. A high-resolution solver was performed for the gas phase flow-field and the Lagrangian method was used to trace particles. The modulations on flow structures and other turbulent characteristics by particles at different Stokes numbers were investigated. It is found that the particles at Stokes numbers of 0.01 and 50 can advance the development of the large-scale vortex structures and make the turbulence intensity profiles wider and lower, but the particles at a Stokes number of 1 delay the evolution of the large-scale vortex structures and decrease the turbulence intensities. The jet velocity half-width and the decay of the streamwise mean velocity in the jet centreline are reduced by all particles, in which particles at a Stokes number of 0.01 result in a larger reduction of the velocity half-width and particles at a Stokes number of 1 lead to a larger reduction of the streamwise mean velocity decay. All particles decrease the vorticity thickness, but increase the fluid momentum thickness. In addition, the two-way coupled particle distribution is more uniform than that of the one-way coupled case.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1784 ◽  
Author(s):  
Weixuan Li ◽  
Xiong Chen ◽  
Wenxiang Cai ◽  
Omer Musa

In this paper, the effect of sudden expansion ratio of solid fuel ramjet (SFRJ) combustor is numerically investigated with swirl flow. A computational fluid dynamics (CFD) code is written in FORTRAN to simulate the combustion and flow patterns in the combustion chamber. The connected-pipe facility is used to perform the experiment with swirl, and high-density Polyethylene (HDPE) is used as the solid fuel. The investigation is performed with different sudden expansion ratios, in which the port and inlet diameters are independently varied. The results indicated that the self-sustained combustion of the SFRJ occurs around the reattachment point at first, and then the heat released in reattachment point is used to achieve the self-sustained combustion in the redevelopment zone. The average regression rate is proportional to the sudden expansion ratio for the cases with a fixed port diameter, which is mainly dominated by the enhancement of heat transfer in backward-facing step. However, the average regression rate is inversely proportional to the sudden expansion ratio for the cases with fixed inlet diameter, which is influenced by the heat transfer mechanism of developed turbulent flow in the redevelopment zone.


1987 ◽  
Vol 174 ◽  
pp. 271-298 ◽  
Author(s):  
T. R. Steiner ◽  
A. E. Perry

An investigation of a selection of high-Reynolds-number bluff-body flows was conducted. Here in Part 2 phase-averaged velocity-field results will be presented for several far-wake flows generated by nominally two-dimensional and three-dimensional bodies. In these far-wake flows the shed vortices have approached a nearly constant convection velocity. Some mean velocity and phase-averaged and global Reynoldsstress measurements are also presented. The turbulent wake of a lift-producing three-dimensional body has been examined. Also included are the phase-averaged wake patterns behind a flapping flag and a windmill. The topological structure of these patterns is discussed and a preliminary classification of wake patterns is presented.


Author(s):  
Tong-Miin Liou ◽  
Po-Wen Hwang ◽  
Wan-Yih Lien

A numerical analysis was performed to study excited turbulent reacting flows in a combustion chamber consisting of gaseous fuels injecting through porous walls. The time-dependent axisymmetric compressible conservation equations were solved directly without using subgrid-scale turbulence models. The combustion process considered was a one-step, irreversible, and infinitely fast chemical reaction. The numerical code used the finite-volume technique, which involved alternating in time the second-order, explicit MacCormack’s and modified Godunov’s schemes. Excitations with various forcing frequencies were applied to the air inflow boundary to investigate their effects on the large-scale unsteady flow structures, vorticity dynamics, mean flame position, mean temperature distribution, and characteristic exhaust velocity. From the numerical flow visualization of the instantaneous vorticity field and the associated vorticity dynamics analysis, a rationale for the augmentation or diminution of organized vortical structures under external excitations was provided. It is found that an excitation with the fundamental frequency attains a larger high temperature recirculation zone with a higher peak temperature and hence a better flame-holding condition. An application of the active control by forcing the air inlet velocity with the fundamental frequency at various amplitudes to an original non-sustained combustion case indicates that the combustion can be sustained if an appropriate exciting amplitude is selected.


1998 ◽  
Vol 373 ◽  
pp. 33-79 ◽  
Author(s):  
MARK V. ZAGAROLA ◽  
ALEXANDER J. SMITS

Measurements of the mean velocity profile and pressure drop were performed in a fully developed, smooth pipe flow for Reynolds numbers from 31×103 to 35×106. Analysis of the mean velocity profiles indicates two overlap regions: a power law for 60<y+<500 or y+<0.15R+, the outer limit depending on whether the Kármán number R+ is greater or less than 9×103; and a log law for 600<y+<0.07R+. The log law is only evident if the Reynolds number is greater than approximately 400×103 (R+>9×103). Von Kármán's constant was shown to be 0.436 which is consistent with the friction factor data and the mean velocity profiles for 600<y+<0.07R+, and the additive constant was shown to be 6.15 when the log law is expressed in inner scaling variables.A new theory is developed to explain the scaling in both overlap regions. This theory requires a velocity scale for the outer region such that the ratio of the outer velocity scale to the inner velocity scale (the friction velocity) is a function of Reynolds number at low Reynolds numbers, and approaches a constant value at high Reynolds numbers. A reasonable candidate for the outer velocity scale is the velocity deficit in the pipe, UCL−Ū, which is a true outer velocity scale, in contrast to the friction velocity which is a velocity scale associated with the near-wall region which is ‘impressed’ on the outer region. The proposed velocity scale was used to normalize the velocity profiles in the outer region and was found to give significantly better agreement between different Reynolds numbers than the friction velocity.The friction factor data at high Reynolds numbers were found to be significantly larger (>5%) than those predicted by Prandtl's relation. A new friction factor relation is proposed which is within ±1.2% of the data for Reynolds numbers between 10×103 and 35×106, and includes a term to account for the near-wall velocity profile.


2014 ◽  
Vol 758 ◽  
pp. 327-343 ◽  
Author(s):  
Sergio Pirozzoli ◽  
Matteo Bernardini ◽  
Paolo Orlandi

AbstractWe investigate the behaviour of the canonical turbulent Couette flow at computationally high Reynolds number through a series of large-scale direct numerical simulations. We achieve a Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau } = h/\delta _v \approx 1000$, where $h$ is the channel half-height and $\delta _v$ is the viscous length scale at which some phenomena representative of the asymptotic Reynolds-number regime manifest themselves. While a logarithmic mean velocity profile is found to provide a reasonable fit of the data, including the skin friction, closer scrutiny shows that deviations from the log law are systematic, and probably increasing at higher Reynolds numbers. The Reynolds stress distribution shows the formation of a secondary outer peak in the streamwise velocity variance, which is associated with significant excess of turbulent production as compared to the local dissipation. This excess is related to the formation of large-scale streaks and rollers, which are responsible for a substantial fraction of the turbulent shear stress in the channel core, and for significant increase of the turbulence intermittency in the near-wall region.


Author(s):  
Le Xie ◽  
Guangwen He ◽  
Bin Yu ◽  
Shaowei Yan

Abstract In this study, the mixing quality of high-viscosity yield stress fluid (Carbopol aqueous solution) under laminar and turbulent flow regimes was evaluated through a numerical experimental study. A three-dimensional computational fluid dynamics large-eddy simulation (CFD-LES) model was employed to capture large-scale vortex structures. The proposed CFD model was validated by the experimental data in terms of mean velocity profiles and velocity-time history. Thereafter, the CFD model was applied to simulate the residence time distribution using the tracking technique: tracer pulse method and step method. In addition, the non-ideal flow phenomena caused by molecular diffusion and eddy diffusion were evaluated. The effects of the rheological properties on the mixing performance were also investigated. The presented results can provide useful guidance to enhance mass transfer in reactors with high-viscosity fluids.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4886 ◽  
Author(s):  
Yang Yang ◽  
Xiao Liu ◽  
Zhihao Zhang

The current work is focused on investigating the potential of data-driven post-processing techniques, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) for flame dynamics. Large-eddy simulation (LES) of a V-gutter premixed flame was performed with two Reynolds numbers. The flame transfer function (FTF) was calculated. The POD and DMD were used for the analysis of the flame structures, wake shedding frequency, etc. The results acquired by different methods were also compared. The FTF results indicate that the flames have proportional, inertial, and delay components. The POD method could capture the shedding wake motion and shear layer motion. The excited DMD modes corresponded to the shear layer flames’ swing and convect motions in certain directions. Both POD and DMD could help to identify the wake shedding frequency. However, this large-scale flame oscillation is not presented in the FTF results. The negative growth rates of the decomposed mode confirm that the shear layer stabilized flame was more stable than the flame possessing a wake instability. The corresponding combustor design could be guided by the above results.


2007 ◽  
Vol 135 (11) ◽  
pp. 3876-3894 ◽  
Author(s):  
Ali R. Mohebalhojeh ◽  
David G. Dritschel

Abstract The representation of nonlinear shallow-water flows poses severe challenges for numerical modeling. The use of contour advection with contour surgery for potential vorticity (PV) within the contour-advective semi-Lagrangian (CASL) algorithm makes it possible to handle near-discontinuous distributions of PV with an accuracy beyond what is accessible to conventional algorithms used in numerical weather and climate prediction. The emergence of complex distributions of the materially conserved quantity PV, in the absence of forcing and dissipation, results from large-scale shearing and deformation and is a common feature of high Reynolds number flows in the atmosphere and oceans away from boundary layers. The near-discontinuous PV in CASL sets a limit on the actual numerical accuracy of the Eulerian, grid-based part of CASL. For the spherical shallow-water equations, the limit is studied by comparing the accuracy of CASL algorithms with second-order-centered, fourth-order-compact, and sixth-order-supercompact finite differencing in latitude in conjunction with a spectral treatment in longitude. The comparison is carried out on an unstable midlatitude jet at order one Rossby number and low Froude number that evolves into complex vortical structures with sharp gradients of PV. Quantitative measures of global conservation of energy and angular momentum, and of imbalance as diagnosed using PV inversion by means of Bolin–Charney balance, indicate that fourth-order differencing attains the highest numerical accuracy achievable for such nonlinear, advectively dominated flows.


1969 ◽  
Vol 35 (2) ◽  
pp. 225-241 ◽  
Author(s):  
M. A. Badri Narayanan ◽  
V. Ramjee

Experiments on reverse transition were conducted in two-dimensional accelerated incompressible turbulent boundary layers. Mean velocity profiles, longitudinal velocity fluctuations $\tilde{u}^{\prime}(=(\overline{u^{\prime 2}})^{\frac{1}{2}})$ and the wall-shearing stress (TW) were measured. The mean velocity profiles show that the wall region adjusts itself to laminar conditions earlier than the outer region. During the reverse transition process, increases in the shape parameter (H) are accompanied by a decrease in the skin friction coefficient (Cf). Profiles of turbulent intensity (u’2) exhibit near similarity in the turbulence decay region. The breakdown of the law of the wall is characterized by the parameter \[ \Delta_p (=\nu[dP/dx]/\rho U^{*3}) = - 0.02, \] where U* is the friction velocity. Downstream of this region the decay of $\tilde{u}^{\prime}$ fluctuations occurred when the momentum thickness Reynolds number (R) decreased roughly below 400.


Sign in / Sign up

Export Citation Format

Share Document