scholarly journals Can living mulches in intercropping systems reduce the potential nitrate leaching? Studies of organic cauliflower (Brassica oleracea L. var. botrytis) and leek (Allium porrum L.) production across European conditions

2016 ◽  
Vol 32 (3) ◽  
pp. 224-239 ◽  
Author(s):  
Yue Xie ◽  
Fabio Tittarelli ◽  
Peter von Fragstein ◽  
Martina Bavec ◽  
Stefano Canali ◽  
...  

AbstractThe effect of introduction strategy for living mulches (LMs) to reduce the potential nitrate leaching was investigated when grown with vegetables with high nitrogen (N) demand and low use efficiency in four European countries: Italy, Slovenia, Germany and Denmark over 2 yr. The plant N uptake and soil nitrate N content at harvest, in the autumn, and in the following spring were measured below open-pollinated and hybrid cultivars of cauliflower and leek crops. The cultivars performed differently over the 2 yr. In Italy and Slovenia, when LM of burr medic or white clover was broad sown (addition design ADD) at the same time as crop transplanting, the N uptake of crops was hampered without increasing the total aboveground N accumulation. Delaying LM sowing by 2.5–4 weeks maintained the N uptake of crops. In Germany, delaying white clover sowing for a month in cauliflower reduced soil nitrate at the start of leaching by 17–33 kg N ha−1 in the ADD design and 25 kg N ha−1 in the substitution design (SUB), where rows of cash crops were replaced by rows of LM. An overwintering LM of grass–clover incorporated in strips and root pruned decreased soil nitrate at the start of the leaching period by 35 kg N ha−1 in cauliflower, and in leek, an LM of dyer's woad decreased the soil nitrate by 55 kg N ha−1 at harvest and 30 kg N ha−1 at the start of leaching. The effect of delayed LM sowing depended on the LM species and system design. Overall, the SUB and ADD designs showed potential to reduce nitrate leaching, whereas the ADD design had stronger competition against either cash crop or LM. The key to reduce soil nitrate N without jeopardizing crop yields may be to identify suitable growing periods, sometimes combined with root pruning, for each LM species and system design. The LM introduction strategy can be used to control competition and reduce the potential leaching, but the performance depends on the intensity of the interspecific competition and the local conditions.

1968 ◽  
Vol 48 (3) ◽  
pp. 341-348 ◽  
Author(s):  
R. L. Halstead ◽  
F. J. Sowden

Annual additions of green rye, straw, alfalfa, leaves, peat, muck and manure to a sand and a clay soil for 20 years tended to increase the mean yields of the crops grown in the field. This positive effect of the organic amendments on yield was confirmed in a greenhouse experiment with oats, which were grown in samples obtained at the end of the experimental period. Additions of straw, alfalfa, leaves and manure had the greatest effect on yield and on uptake of N and P by the oats.A comparison of the amended and untreated samples at the end of the experiment showed that the amendments usually increased the total C and N slightly, nitrate production capacity, exchange capacity, exchangeable and water-soluble Ca, Mg and K, and phosphatase enzyme activity of the soils, whereas their effect on soil P was less consistent. In most instances, the amendments increased the aggregate stability of the clay soil.Of the N fractions investigated, only the nitrate N released during a two-week incubation period was correlated significantly with yield and N uptake in the greenhouse experiment. These yield parameters and the amounts of nitrate N produced were not related significantly to total, hexosamine, NH4 or amino acid N forms or to individual amino acids in the soils.


2002 ◽  
Vol 12 (2) ◽  
pp. 250-256 ◽  
Author(s):  
Hudson Minshew ◽  
John Selker ◽  
Delbert Hemphill ◽  
Richard P. Dick

Predicting leaching of residual soil nitrate-nitrogen (NO3-N) in wet climates is important for reducing risks of groundwater contamination and conserving soil N. The goal of this research was to determine the potential to use easily measurable or readily available soilclimatic-plant data that could be put into simple computer models and used to predict NO3 leaching under various management systems. Two computer programs were compared for their potential to predict monthly NO3-N leaching losses in western Oregon vegetable systems with or without cover crops. The models were a statistical multiple linear regression (MLR) model and the commercially available Nitrate Leaching and Economical Analysis Package model (NLEAP 1.13). The best MLR model found using stepwise regression to predict annual leachate NO3-N had four independent variables (log transformed fall soil NO3-N, leachate volume, summer crop N uptake, and N fertilizer rate) (P < 0.001, R2 = 0.57). Comparisons were made between NLEAP and field data for mass of NO3-N leached between the months of September and May from 1992 to 1997. Predictions with NLEAP showed greater correlation to observed data during high-rainfall years compared to dry or averagerainfall years. The model was found to be sensitive to yield estimates, but vegetation management choices were limiting for vegetable crops and for systems that included a cover crop.


2014 ◽  
Vol 11 (1) ◽  
pp. 91-107 ◽  
Author(s):  
F. Cui ◽  
X. Zheng ◽  
C. Liu ◽  
K. Wang ◽  
Z. Zhou ◽  
...  

Abstract. Contemporary agriculture is shifting from a single-goal to a multi-goal strategy, which in turn requires choosing best management practice (BMP) based on an assessment of the biogeochemical effects of management alternatives. The bottleneck is the capacity of predicting the simultaneous effects of different management practice scenarios on multiple goals and choosing BMP among scenarios. The denitrification–decomposition (DNDC) model may provide an opportunity to solve this problem. We validated the DNDC model (version 95) using the observations of soil moisture and temperature, crop yields, aboveground biomass and fluxes of net ecosystem exchange of carbon dioxide, methane, nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from a wheat–maize cropping site in northern China. The model performed well for these variables. Then we used this model to simulate the effects of management practices on the goal variables of crop yields, NO emission, nitrate leaching, NH3 volatilization and net emission of greenhouse gases in the ecosystem (NEGE). Results showed that no-till and straw-incorporated practices had beneficial effects on crop yields and NEGE. Use of nitrification inhibitors decreased nitrate leaching and N2O and NO emissions, but they significantly increased NH3 volatilization. Irrigation based on crop demand significantly increased crop yield and decreased nitrate leaching and NH3 volatilization. Crop yields were hardly decreased if nitrogen dose was reduced by 15% or irrigation water amount was reduced by 25%. Two methods were used to identify BMP and resulted in the same BMP, which adopted the current crop cultivar, field operation schedules and full straw incorporation and applied nitrogen and irrigation water at 15 and 25% lower rates, respectively, than the current use. Our study indicates that the DNDC model can be used as a tool to assess biogeochemical effects of management alternatives and identify BMP.


1995 ◽  
Vol 124 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. S. Francis ◽  
R. J. Haynes ◽  
P. H. Williams

SUMMARYTwo field experiments at Canterbury, New Zealand during 1991–93 investigated the effect of the timing of ploughing a 4-year-old ryegrass/white clover pasture and the effect of two winter cover crops on subsequent N mineralization, nitrate leaching and growth and N uptake of the following wheat crops.Net N mineralization of organic N (of plant and soil origin) increased with increased fallow period between ploughing and leaching. The total amount of N accumulated in the profile by the start of winter ranged from 107 to 131 and from 42 to 45 kg N/ha for fallow treatments started in March and May respectively. Winter wheat (planted in May) had no effect on mineral N contents by the start of winter, whereas greenfeed (GF) oats (planted in March) significantly reduced the mineral N content in one year.Cumulative leaching losses over the first winter after ploughing-in pasture varied markedly between years in relation to rainfall amount and distribution. Leaching losses were greater from the March fallow (72–106 kg N/ha) than the May fallow treatments (8–52 kg N/ha). Winter wheat did not reduce leaching losses in either year. GF oats did not reduce losses in 1991/92, but losses in 1992/93, when major drainage events occurred late in the winter, were only c. 40% of those under fallow.Incorporation of a large amount (> 7 t/ha dry matter) of pasture or GF oat residue in spring depressed yield and total N uptake of the following spring wheat, largely due to net N immobilization which could be overcome by the application of fertilizer N.First-year treatments had very little residual effect in the second year. Leaching losses over the second winter (mean 142 kg N/ha) were largely unaffected by the extent of first year leaching losses. Second year leaching losses were greater than first year losses, probably due to the greater amount of mineral N at depth in the soil before the start of the second winter.


2019 ◽  
Vol 657 ◽  
pp. 96-102 ◽  
Author(s):  
Yingcheng Wang ◽  
Hao Ying ◽  
Yulong Yin ◽  
Huifang Zheng ◽  
Zhenling Cui

2010 ◽  
Vol 44-45 (2010-2011) ◽  
pp. 11-17
Author(s):  
Michael Aide ◽  
Indi Braden ◽  
Neil Hermann ◽  
David Mauk ◽  
Wesley Mueller ◽  
...  

Abstract Controlled subsurface drainage irrigation systems promote crop productivity; however, these land management systems also allow an efficient pathway for the transport of elements from soils to surface water resources. The nitrate and macro-element effluent concentrations from tile-drainage involving a 40 ha controlled subsurface drainage irrigation system are described and compared to soil nitrate availability. Soil nitrate concentrations generally show an increase immediately after soil nitrogen fertilization practices and are sufficiently abundant to promote their transport from the soil resource to the tile-drain effluent waters. The data indicates that: (1) the transport of nitrate-N in tile-drain effluent waters is appreciable; (2) denitrification pathways effectively reduce a portion of the soil nitrate-N when the controlled drainage system establishes winter-early spring anoxic soil conditions, and (3) the best strategy for reducing nitrate-N concentrations in tile-drain effluent waters is adjusting N fertilization rates and the timing of their application. The development of bioreactors for simulating wetland conditions may further limit nitrate concentrations in surface waters because of soil drainage.


1989 ◽  
Vol 58 (4) ◽  
pp. 549-554 ◽  
Author(s):  
Yasumasa KATO ◽  
Masao TAKEDA
Keyword(s):  
N Uptake ◽  

Sign in / Sign up

Export Citation Format

Share Document