Performance evaluation of locally available composts to reduce replant disease in apple orchards of central Europe

2018 ◽  
Vol 34 (6) ◽  
pp. 543-557 ◽  
Author(s):  
Ingrid H. Franke-Whittle ◽  
Marina Fernández-Delgado Juárez ◽  
Heribert Insam ◽  
Simon Schweizer ◽  
Andreas Naef ◽  
...  

AbstractA study on locally available composts in Austria, Germany, Italy and Switzerland was conducted to investigate the potential of these non-chemical based tools to increase soil health in orchards afflicted by apple replant disease (ARD). A total of 26 different composts (six to seven per country) were chosen for the study. Composts were divided into ten types according to the waste materials used as substrates in the composting process. Growth reduction is the main symptom associated with replant disease; therefore compost performance was evaluated based on the growth responses of apple rootstock plantlets in compost-amended soils in pots. These greenhouse trials were performed in one research station per country, located in an intensive apple-growing area, and soil was taken from an apple orchard affected by replanting disease. Plant growth response was measured as shoot elongation at the end of each greenhouse trial, and results showed increases in growth compared with the respective controls of 2–26% in 20 out of 26 composts evaluated. The heterogeneous nature of the composts most likely attributed to the finding that similar compost types originating from the different countries had varying effects on plant growth. Overall, no significant changes in chemical and biological properties were observed in amended soils as compared with non-amended controls. The high soil resilience was in part expected given the good organic matter content in the original soils (>2%). The bacterial communities of the composts were investigated using the COMPOCHIP microarray, and analyses showed that differences in plant growth response were mainly attributed to the microbial changes introduced into the soil through composts rather than to changes in soil chemical and biological parameters. However, the bacterial communities of composts appeared to be more influenced by geographical origin than by compost type. The results have shown that soil amendment with composts generated from locally produced wastes have the potential to reduce the effects of ARD, although the effects appear to be both compost and soil specific.

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 750C-750
Author(s):  
Mark T.F. Highland* ◽  
Daniel C. Sclar ◽  
Elaine R. Ingham ◽  
Karen L. Gartley ◽  
James E. Swasey

Compost has great potential for use in horticulture; however, the relationship between compost feedstock materials and resultant compost characteristics must be well understood. Research examining plant growth response from the addition of compost to container growing media is limited. This research had two parts: the first part examined the relationship between compost feedstock materials and resultant mature compost characteristics. The second part investigated plant growth responses when compost replaced the peat component of container growing media. Two feedstock treatments were aerobically composted in turned windrows. Compost characteristics examined include pH, EC, C:N Ratio, Solvita Maturity, and several biological characteristics (total and active bacteria, total and active fungi, protozoa, spore forming bacteria, E. coli O157:H7, and total coliformic bacteria). To examine plant growth response, compost was substituted for peat (from 0%-40% by total volume) in container growing media. Crops tested were Antirrhinum majus `Rocket White', Viola × wittrockiana `Crown Azure', Oriental Hybrid Lilium `Siberia', and Chrysanthemum × grandiflorum `Yellow Kodiak'. Quantitative plant growth response measurements (shoot fresh and dry weight, percent root necrosis, flower number, and flower size) were recorded and compared by treatment. Despite initial feedstock differences between the two compost treatments, both resulted in similar compost biology and species richness. Coliformic bacteria and E. coli O157:H7 levels were below detection limits in final compost. Choice of compost feedstock materials had a significant effect on the chemical characteristics of the finished product. Compost replacement for peat resulted in plant growth greater than or equal to those of the control treatment.


2019 ◽  
Vol 30 (5) ◽  
pp. 1041-1048 ◽  
Author(s):  
Yunwu Xiong ◽  
Bing Yu ◽  
Mengting Bai ◽  
Xueyang Zhang ◽  
Guanhua Huang ◽  
...  

Rhizosphere ◽  
2019 ◽  
Vol 9 ◽  
pp. 38-46 ◽  
Author(s):  
Dante A. López-Carmona ◽  
Alejandro Alarcón ◽  
Esperanza Martínez-Romero ◽  
Juan José Peña-Cabriales ◽  
John Larsen

Soil Science ◽  
2008 ◽  
Vol 173 (5) ◽  
pp. 342-349 ◽  
Author(s):  
C. Edward Clapp ◽  
Moshe Shenker ◽  
Michael H. B. Hayes ◽  
Raymond Liu ◽  
Van W. Cline ◽  
...  

1994 ◽  
Vol 30 (3) ◽  
pp. 311-318 ◽  
Author(s):  
P. Pineda ◽  
J. A. Kipe-Nolt ◽  
E. Rojas

SUMMARYNitrogen deficiency severely limits production of the bean–maize association grown by small-scale farmers in upland Peru. Sixty-four bean Rhizobium isolates were evaluated for induction of a plant growth response in pots of soil from the area and 14 of the most promising strains of these were tested on farmers' fields in 13 trials over a three year period. Bean yields were increased by inoculation with at least one Rhizobium strain in seven of the trials, with increases ranging from 0.21 to 0.68 t ha−1. Bean yields were not increased by the application of 120 kg N ha−1 to the intercrop. Maize yields were increased by Rhizobium inoculation in nine of the 13 trials by between 0.34 and 1.85 t ha−1. Maize responded to nitrogen fertilizer on the same nine farms. This Rhizobium selection strategy, although laborious, was effective in identifying strains that can be recommended for use as inoculants by farmers in the region.


2014 ◽  
pp. 37-89 ◽  
Author(s):  
Michael T. Rose ◽  
Antonio F. Patti ◽  
Karen R. Little ◽  
Alicia L. Brown ◽  
W. Roy Jackson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document