scholarly journals Influence of the solar radiation on Earth's climate using the LMDz-REPROBUS model

2009 ◽  
Vol 5 (S264) ◽  
pp. 350-355 ◽  
Author(s):  
Sandrine Lefebvre ◽  
Marion Marchand ◽  
Slimane Bekki ◽  
Philippe Keckhut ◽  
Franck Lefèvre ◽  
...  

AbstractThe atmospheric response to the 11-year solar cycle is studied using the fully interactive 3-D coupled chemistry-general circulation model LMDz-REPROBUS with a complete seasonal cycle. We will show results concerning a comparison between two series of 20-year runs, one in maximum of activity and the other in minimum. The stratosphere-troposphere system shows partly significant response to a solar cycle enhancement of UV radiation. We show how the changes in stratospheric ozone, temperature and zonal wind are connected.

2007 ◽  
Vol 20 (2) ◽  
pp. 353-374 ◽  
Author(s):  
J. Ballabrera-Poy ◽  
R. Murtugudde ◽  
R-H. Zhang ◽  
A. J. Busalacchi

Abstract The ability to use remotely sensed ocean color data to parameterize biogenic heating in a coupled ocean–atmosphere model is investigated. The model used is a hybrid coupled model recently developed at the Earth System Science Interdisciplinary Center (ESSIC) by coupling an ocean general circulation model with a statistical atmosphere model for wind stress anomalies. The impact of the seasonal cycle of water turbidity on the annual mean, seasonal cycle, and interannual variability of the coupled system is investigated using three simulations differing in the parameterization of the vertical attenuation of downwelling solar radiation: (i) a control simulation using a constant 17-m attenuation depth, (ii) a simulation with the spatially varying annual mean of the satellite-derived attenuation depth, and (iii) a simulation accounting for the seasonal cycle of the attenuation depth. The results indicate that a more realistic attenuation of solar radiation slightly reduces the cold bias of the model. While a realistic attenuation of solar radiation hardly affects the annual mean and the seasonal cycle due to anomaly coupling, it significantly affects the interannual variability, especially when the seasonal cycle of the attenuation depth is used. The seasonal cycle of the attenuation depth interacts with the low-frequency equatorial dynamics to enhance warm and cold anomalies, which are further amplified via positive air–sea feedbacks. These results also indicate that interannual variability of the attenuation depths is required to capture the asymmetric biological feedbacks during cold and warm ENSO events.


2009 ◽  
Vol 22 (1) ◽  
pp. 177-192 ◽  
Author(s):  
Masamichi Ohba ◽  
Hiroaki Ueda

Abstract Physical processes that are responsible for the asymmetric transition processes between El Niño and La Niña events are investigated by using observational data and physical models to examine the nonlinear atmospheric response to SST. The air–sea coupled system of ENSO is able to remain in a weak, cold event for up to 2 yr, while the system of a relatively warm event turns into a cold phase. Through analysis of the oceanic observational data, it is found that there is a strong difference in thermocline variations in relation to surface zonal wind anomalies in the equatorial Pacific (EP) during the mature-to-decaying phase of ENSO. The atmospheric response for the warm phase of ENSO causes a rapid reduction of the EP westerlies in boreal winter, which play a role in hastening the following ENSO transition through the generation of upwelling oceanic Kelvin waves. However, the anomalous EP easterlies in the cold phase persist to the subsequent spring, which tends to counteract the turnabout from the cold to warm phase of ENSO. A suite of idealized atmospheric general circulation model (AGCM) experiments are performed by imposing two different ENSO-related SST anomalies, which have equal amplitudes but opposite signs. The nonlinear climate response in the AGCM is found at the mature-to-decaying phase of ENSO that closely resembles the observations, including a zonal and meridional shift in the equatorial positions of the atmospheric wind. By using a simple ocean model, it is determined that the asymmetric responses of the equatorial zonal wind result in different recovery times of the thermocline in the eastern Pacific. Thus, the differences in transition processes between the warm and cold ENSO event are fundamentally due to the nonlinear atmospheric response to SST, which originates from the distribution of climatological SST and its seasonal changes. By including the asymmetric wind responses the intermediate air–sea coupled model herein demonstrates that the essential elements of the redevelopment of La Niña arise from the nonlinear atmospheric response to SST anomalies.


2008 ◽  
Vol 21 (15) ◽  
pp. 3740-3754 ◽  
Author(s):  
Takaaki Yokoi ◽  
Tomoki Tozuka ◽  
Toshio Yamagata

Abstract Using an ocean general circulation model (OGCM), seasonal variation of the Seychelles Dome (SD) is investigated for the first time. The SD is an oceanic thermal dome located in the southwestern Indian Ocean, and its influence on sea surface temperature is known to play an important role in the Indian monsoon system. Its seasonal variation is dominated by a remarkable semiannual cycle resulting from local Ekman upwelling. This semiannual nature is explained by different contributions of the following two components of the Ekman pumping: one term that is proportional to the planetary beta and the zonal wind stress and the other term that is proportional to the wind stress curl. The former is determined by the seasonal change in the zonal component of the wind stress vector above the SD; it is associated with the Indian monsoon and causes downwelling (upwelling) during boreal summer (boreal winter). The latter, whose major contribution comes from the meridional gradient of the zonal wind stress, also shows a clear annual cycle with strong upwelling during boreal summer and fall. However, it remains almost constant for 5 months from June to October, even though the zonal wind stress itself varies significantly during this period. The above overall feature is due to the unique location of the SD; it is located between the following two regions: one is dominated by the seasonal variation in wind stress resulting from the Indian monsoon, and the other is dominated by the southeasterly trade winds that prevail throughout a year. The above uniqueness provides a novel mechanism that causes the strong semiannual cycle in the tropical Indian Ocean.


2013 ◽  
Vol 26 (4) ◽  
pp. 1230-1248 ◽  
Author(s):  
James A. Screen ◽  
Ian Simmonds ◽  
Clara Deser ◽  
Robert Tomas

Abstract Arctic sea ice is declining at an increasing rate with potentially important repercussions. To understand better the atmospheric changes that may have occurred in response to Arctic sea ice loss, this study presents results from atmospheric general circulation model (AGCM) experiments in which the only time-varying forcings prescribed were observed variations in Arctic sea ice and accompanying changes in Arctic sea surface temperatures from 1979 to 2009. Two independent AGCMs are utilized in order to assess the robustness of the response across different models. The results suggest that the atmospheric impacts of Arctic sea ice loss have been manifested most strongly within the maritime and coastal Arctic and in the lowermost atmosphere. Sea ice loss has driven increased energy transfer from the ocean to the atmosphere, enhanced warming and moistening of the lower troposphere, decreased the strength of the surface temperature inversion, and increased lower-tropospheric thickness; all of these changes are most pronounced in autumn and early winter (September–December). The early winter (November–December) atmospheric circulation response resembles the negative phase of the North Atlantic Oscillation (NAO); however, the NAO-type response is quite weak and is often masked by intrinsic (unforced) atmospheric variability. Some evidence of a late winter (March–April) polar stratospheric cooling response to sea ice loss is also found, which may have important implications for polar stratospheric ozone concentrations. The attribution and quantification of other aspects of the possible atmospheric response are hindered by model sensitivities and large intrinsic variability. The potential remote responses to Arctic sea ice change are currently hard to confirm and remain uncertain.


2006 ◽  
Vol 19 (16) ◽  
pp. 3903-3931 ◽  
Author(s):  
H. Schmidt ◽  
G. P. Brasseur ◽  
M. Charron ◽  
E. Manzini ◽  
M. A. Giorgetta ◽  
...  

Abstract This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.


2018 ◽  
Vol 9 (1) ◽  
pp. 285-297 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a reduced gravity ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics oppose the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates strong warming in the central-eastern basin from April to August balanced by cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño–Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2017 ◽  
Author(s):  
Stefanie Talento ◽  
Marcelo Barreiro

Abstract. This study aims to determine the role of the tropical ocean dynamics in the response of the climate to an extratropical thermal forcing. We analyse and compare the outcomes of coupling an atmospheric general circulation model (AGCM) with two ocean models of different complexity. In the first configuration the AGCM is coupled with a slab ocean model while in the second a Reduced Gravity Ocean (RGO) model is additionally coupled in the tropical region. We find that the imposition of an extratropical thermal forcing (warming in the Northern Hemisphere and cooling in the Southern Hemisphere with zero global mean) produces, in terms of annual means, a weaker response when the RGO is coupled, thus indicating that the tropical ocean dynamics opposes the incoming remote signal. On the other hand, while the slab ocean coupling does not produce significant changes to the equatorial Pacific sea surface temperature (SST) seasonal cycle, the RGO configuration generates a strong warming in the centre-east of the basin from April to August balanced by a cooling during the rest of the year, strengthening the seasonal cycle in the eastern portion of the basin. We hypothesize that such changes are possible via the dynamical effect that zonal wind stress has on the thermocline depth. We also find that the imposed extratropical pattern affects El Niño Southern Oscillation, weakening its amplitude and low-frequency behaviour.


2021 ◽  
pp. 1-51
Author(s):  
Yonatan Givon ◽  
Chaim I. Garfinkel ◽  
Ian White

AbstractAn intermediate complexity General Circulation Model is used to investigate the transient response of the NH winter stratosphere to modulated ultraviolet (UV) radiation by imposing a step-wise, deliberately exaggerated UV perturbation and analyzing the lagged response. Enhanced UV radiation is accompanied by an immediate warming of the tropical upper stratosphere. The warming then spreads into the winter subtropics due to an accelerated Brewer Dobson Circulation in the tropical upper stratosphere. The poleward meridional velocity in the subtropics leads to an increase in zonal wind in midlatitudes between 20N and 50N due to Coriolis torque. The increase in mid-latitude zonal wind is accompanied by a dipole in Eliassen-Palm flux convergence, with decreased convergence near the winter pole and increased convergence in mid-latitudes (where winds are strengthening due to the Coriolis torque); this dipole subsequently extends the anomalous westerlies to subpolar latitudes within the first ten days. The initial radiatively-driven acceleration of the Brewer-Dobson circulation due to enhanced shortwave absorption is replaced in the subpolar winter stratosphere by a wave-driven deceleration of the Brewer-Dobson circulation, and after a month the wave-driven deceleration of the Brewer-Dobson circulation encompasses most of the winter stratosphere. Approximately a month after UV is first modified, a significant poleward jet shift is evident in the troposphere. The results of this study may have implications for the observed stratospheric and tropospheric responses to solar variability associated with the 27-day solar rotation period, and also to solar variability on longer timescales.


1984 ◽  
Vol 5 ◽  
pp. 85-87 ◽  
Author(s):  
John E. Kutzbach ◽  
P. J. Guetter

Sensitivity experiments can be used to illustrate the response of the general circulation to prescribed changes in lower boundary conditions (such as ocean temperature) or external forcing conditions (such as solar radiation). The climatic record from the late-glacial and the Holocene provides examples for both types of prescribed change experiments. A number of general circulation model experiments have been carried out. These are reviewed.At 18 ka 8P, orbital parameter values were very much like those of today, but the lower boundary conditions (ocean temperature, ice-sheet extent, etc.) were very different. The change in ocean temperature, and ice-sheet extent and thickness, were prescribed from the results of the Climate: Long-range Investigation Mapping and Prediction (CLIMAP) project.At 9 ka BP, orbital parameter values were very different from present, leading to increased radiation in July and decreased radiation in January (compared to present). The North American ice sheet still covered a significant area, so that lower boundary conditions also differed from the present ones. The combined and individual effects of these prescribed changes on the general circulation are reviewed, particularly in the context of changes of the monsoon circulation.At 6 ka BP, the solar radiation distribution differed from that of today in much the same fashion as at 9 ka BP, although the magnitude of the change was reduced. Lower boundary conditions were probably very similar to those of today.A series of experimental results from 18, 9, and 6 ka BP are presented as “snapshot” estimates of the paleoclimate of those times. The results are based upon simulations with the community climate model of the National Center for Atmospheric Research.


2003 ◽  
Vol 21 (10) ◽  
pp. 2107-2118 ◽  
Author(s):  
I. Kirchner ◽  
D. Peters

Abstract. During boreal winter months, mean longitude-dependent ozone changes in the upper troposphere and lower stratosphere are mainly caused by different ozone transport by planetary waves. The response to radiative perturbation induced by these ozone changes near the tropopause on the circulation is unclear. This response is investigated with the ECHAM4 general circulation model in a sensitivity study. In the simulation two different mean January realizations of the ozone field are implemented in ECHAM4. Both ozone fields are estimated on the basis of the observed mean January planetary wave structure of the 1980s. The first field represents a 14-year average (reference, 1979–1992) and the second one represents the mean ozone field change (anomaly, 1988–92) in boreal extra-tropics during the end of the 1980s. The model runs were carried out pairwise, with identical initial conditions for both ozone fields. Five statistically independent experiments were performed, forced with the observed sea surface temperatures for the period 1988 to 1992. The results support the hypothesis that the zonally asymmetric ozone changes of the 80s triggered a systematic alteration of the circulation over the North Atlantic – European region. It is suggested that this feedback process is important for the understanding of the decadal coupling between troposphere and stratosphere, as well as between subtropics and extra-tropics in winter.Key words. Meteorology and atmospheric dynamics (general circulation; radiative processes; synoptic-scale meteorology)


Sign in / Sign up

Export Citation Format

Share Document