scholarly journals The Bardeen-Petterson effect as the precession mechanism for the radio galaxy 3C 84 (NGC 1275)

2010 ◽  
Vol 6 (S275) ◽  
pp. 182-183
Author(s):  
D. M. Teixeira ◽  
Z. Abraham ◽  
A. Caproni ◽  
D. Falceta-Gonçalves

AbstractIn this work we propose the Bardeen-Petterson effect as the precession mechanism of the jet precession in NGC 1275. To check if this is true we have estimated the angular momentum ratio and the aligment timescale predict by the theory and compared with the numerical results presented in the literature. We were able to explain the precession period assuming an accretion disk with column surface density in the form of a power law with exponent 0.6 < s < 0.7 and a black hole rotation with a spin of 0.23 < a∗<0.4.

2002 ◽  
Vol 19 (1) ◽  
pp. 125-128 ◽  
Author(s):  
Alina-C. Donea ◽  
Peter L. Biermann

AbstractThis paper discusses the boundary layer and the emission spectrum from an accretion disk having a jet anchored at its inner radius, close to the black hole. We summarise our earlier work and apply it to the accretion disks of some blazars. We suggest that the ‘accretion disk with jet’ (ADJ) model could make the bridge between standard accretion disk models (suitable for quasars and FRii sources) and low-power advection dominated accretion disk models (suitable for some of the low-power BL Lacs and FRi sources).The jet is collimated within a very narrow region close to the black hole (nozzle). In our model it is assumed that the boundary layer of the disk is the region between radius Rms — the last marginally stable circular orbit calculated for a Kerr geometry — and the radius Rjet, which gives the thickness of the ‘footring’, i.e. the base of the jet. We analyse the size of the boundary layer of the disk where the jet is fed with energy, mass, and angular momentum. As a consequence of the angular momentum extraction, the accretion disk beyond Rjet no longer has a Keplerian flow. A hot corona usually surrounds the disk, and entrainment of the corona along the flow could also be important for the energy and mass budget of the jet.We assume that the gravitational energy available at the footring of the jet goes into the jet, and so the spectrum from the accretion disk gives a total luminosity smaller than that of a ‘standard’ accretion disk, and our ADJ model should apply for blazars with low central luminosities. Variations of the boundary layer and nozzle may account for some of the variability observed in active galactic nuclei.


2021 ◽  
Vol 0 (1) ◽  
pp. 87-91
Author(s):  
R.M. YUSUPOVA ◽  
◽  
R.N. ZMAILOV ◽  

The Taub-NUT space-time metric is one of the vacuum solutions to Einstein's gravitational field equations. In this metric, the Newman-Unti-Tamburino parameter (NUT) and its effect on the physical properties of a thin accretion disk are of particular interest. In this paper, calculations are performed to determine the physical properties of a thin accretion disk around the Taub-NUT black hole based on the Page-Thorne model. The influence of the NUT parameter on the angular velocity, binding energy, angular momentum of particles, effective potential, energy flow, and temperature of the accretion disk is revealed. According to the data obtained, the temperature of the accretion disk of the Taub-NUT black hole decreases as the value of the NUT parameter increases.


2012 ◽  
Vol 56 (1) ◽  
pp. 1-8
Author(s):  
V. S. Beskin ◽  
A. A. Zheltoukhov ◽  
V. I. Pariev

2019 ◽  
Vol 625 ◽  
pp. A26
Author(s):  
S. Ronchini ◽  
F. Tombesi ◽  
F. Vagnetti ◽  
F. Panessa ◽  
G. Bruni

Context. We have investigated the dichotomy between jetted and non-jetted active galactic nuclei (AGNs), focusing on the fundamental differences of these two classes in the accretion physics onto the central supermassive black hole (SMBH). We tested the validity of the unification model of AGNs through the characterization of the mutual interaction between accreting and outflowing matter in radio galaxies. Aims. Our aim is to study and constrain the structure, kinematics and physical state of the nuclear environment in the broad line radio galaxy (BLRG) PKS 2251+11. The high X-ray luminosity and the relative proximity make such AGN an ideal candidate for a detailed analysis of the accretion regions in radio galaxies. The investigation will help to shed light on the analogies and differences between the BLRGs and the larger class of radio-quiet Seyfert galaxies and hence on the processes that trigger the launch of a relativistic jet. Methods. We performed a spectral and timing analysis of a ∼64 ks observation of PKS 2251+11 in the X-ray band with XMM-Newton. We modeled the spectrum considering an absorbed power law superimposed to a reflection component. We performed a time-resolved spectral analysis to search for variability of the X-ray flux and of the individual spectral components. Results. We find that the power law has a photon index Γ = 1.8 ± 0.1, absorbed by an ionized partial covering medium with a column density NH = (10.1 ± 0.8) × 1023 cm−2, a ionization parameter log ξ = 1.3 ± 0.1 erg s−1 cm and a covering factor f ≃ 90%. Considering a density of the absorber typical of the broad line region (BLR), its distance from the central SMBH is of the order of r ∼ 0.1 pc. An Fe Kα emission line is found at 6.4 keV, whose intensity shows variability on timescales of hours. We derive that the reflecting material is located at a distance r ≳ 600rs, where rs is the Schwarzschild radius. Conclusions. Concerning the X-ray properties, we found that PKS 2251+11 does not differ significantly from the non-jetted AGNs, confirming the validity of the unified model in describing the inner regions around the central SMBH, but the lack of information regarding the state of the very innermost disk and SMBH spin still leaves unconstrained the origin of the jet.


2009 ◽  
Vol 5 (S267) ◽  
pp. 333-333
Author(s):  
Robyn Levine ◽  
Nickolay Y. Gnedin ◽  
Andrew J. S. Hamilton

Using a hydrodynamic adaptive mesh refinement code, we simulate the growth and evolution of a typical disk galaxy hosting a supermassive black hole (SMBH) within a cosmological volume. The simulation covers a dynamical range of 10 million, which allows us to study the transport of matter and angular momentum from super-galactic scales down to the outer edge of the accretion disk around the SMBH. A dynamically interesting circumnuclear disk develops in the central few hundred parsecs of the simulated galaxy, through which gas is stochastically transported to the central black hole.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Haopeng Yan ◽  
Minyong Guo ◽  
Bin Chen

AbstractWe revisit monochromatic and isotropic photon emissions from the zero-angular-momentum sources (ZAMSs) near a Kerr black hole. We investigate the escape probability of the photons that can reach to infinity and study the energy shifts of these escaping photons, which could be expressed as the functions of the source radius and the black hole spin. We study the cases for generic source radius and black hole spin, but we pay special attention to the near-horizon (near-)extremal Kerr ((near-)NHEK) cases. We reproduce the relevant numerical results using a more efficient method and get new analytical results for (near-)extremal cases. The main non-trivial results are: in the NHEK region of a (near-)extremal Kerr black hole, the escape probability for a ZAMS tends to $$\frac{7}{24}\approx 29.17\%$$ 7 24 ≈ 29.17 % , independent of the NHEK radius; at the innermost of the photon shell (IPS) in the near-NHEK region, the escape probability for a ZAMS tends to $$\begin{aligned} \frac{5}{12} -\frac{1}{\sqrt{7}} + \frac{2}{\sqrt{7}\pi }\arctan \frac{1}{\sqrt{7}}\approx 12.57\% . \end{aligned}$$ 5 12 - 1 7 + 2 7 π arctan 1 7 ≈ 12.57 % .


2007 ◽  
Vol 22 (02) ◽  
pp. 141-157 ◽  
Author(s):  
ORHAN DONMEZ

The shocked wave created on the accretion disk after different physical phenomena (accretion flows with pressure gradients, star-disk interaction etc.) may be responsible observed Quasi Periodic Oscillations (QPOs) in X-ray binaries. We present the set of characteristics frequencies associated with accretion disk around the rotating and non-rotating black holes for one particle case. These persistent frequencies are results of the rotating pattern in an accretion disk. We compare the frequency's from two different numerical results for fluid flow around the non-rotating black hole with one particle case. The numerical results are taken from Refs. 1 and 2 using fully general relativistic hydrodynamical code with non-selfgravitating disk. While the first numerical result has a relativistic tori around the black hole, the second one includes one-armed spiral shock wave produced from star-disk interaction. Some physical modes presented in the QPOs can be excited in numerical simulation of relativistic tori and spiral waves on the accretion disk. The results of these different dynamical structures on the accretion disk responsible for QPOs are discussed in detail.


2006 ◽  
Vol 15 (07) ◽  
pp. 1001-1015 ◽  
Author(s):  
ORHAN DÖNMEZ

The dynamical evolution of star–disk interaction containing a massive black hole is examined in a region in which physical perturbation dominates other processes and strong gravitational region dominates the potential. The numerical simulation of accretion disk around the black hole is modeled when star is captured by it. When the accretion disk, in steady state or not, is perturbed by the star, the disk around the black hole is destroyed by the star–disk interaction. Destroyed accretion disk creates a spiral shock wave and it causes loss of angular momentum. Finally, because of losing angular momentum, gas starts falling into the black hole. At the same time, X-ray is emitted by accretion disk during the unstable cases. The massive black hole may be created as a consequence of interaction.


2017 ◽  
Vol 609 ◽  
pp. A26 ◽  
Author(s):  
E. Gallego-Cano ◽  
R. Schödel ◽  
H. Dong ◽  
F. Nogueras-Lara ◽  
A. T. Gallego-Calvente ◽  
...  

Context. The existence of dynamically relaxed stellar density cusps in dense clusters around massive black holes is a long-standing prediction of stellar dynamics, but it has so far escaped unambiguous observational confirmation. Aims. In this paper we aim to revisit the problem of inferring the innermost structure of the Milky Way’s nuclear star cluster via star counts, to clarify whether it displays a core or a cusp around the central black hole. Methods. We used judiciously selected adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through image stacking and improved point spread function fitting we pushed the completeness limit about one magnitude deeper than in previous, comparable work. Crowding and extinction corrections were derived and applied to the surface density estimates. Known young, and therefore dynamically not relaxed stars, are excluded from the analysis. Contrary to previous work, we analyse the stellar density in well-defined magnitude ranges in order to be able to constrain stellar masses and ages. Results. We focus on giant stars, with observed magnitudes K = 12.5−16, and on stars with observed magnitudes K ≈ 18, which may have similar mean ages and masses than the former. The giants display a core-like surface density profile within a projected radius R ≤ 0.3 pc of the central black hole, in agreement with previous studies, but their 3D density distribution is not inconsistent with a shallow cusp if we take into account the extent of the entire cluster, beyond the radius of influence of the central black hole. The surface density of the fainter stars can be described well by a single power-law at R < 2 pc. The cusp-like profile of the faint stars persists even if we take into account the possible contamination of stars in this brightness range by young pre-main sequence stars. The data are inconsistent with a core-profile for the faint stars. Finally, we show that a 3D Nuker law provides a good description of the cluster structure. Conclusions. We conclude that the observed density of the faintest stars detectable with reasonable completeness at the Galactic centre, is consistent with the existence of a stellar cusp around the Milky Way’s central black hole, Sagittarius A*. This cusp is well developed inside the influence radius of Sagittarius A* and can be described by a single three-dimensional power-law with an exponent γ = 1.43 ± 0.02 ± 0.1sys. This corroborates existing conclusions from Nbody simulations performed in a companion paper. An important caveat is that the faint stars analysed here may be contaminated significantly by dynamically unrelaxed stars that formed about 100 Myr ago. The apparent lack of giants at projected distances of R ≲ 0.3 pc (R ≲ 8′′) of the massive black hole may indicate that some mechanism may have altered their distribution or intrinsic luminosity. We roughly estimate the number of possibly missing giants to about 100.


2021 ◽  
Vol 03 (04) ◽  
pp. 78-83
Author(s):  
Xudoyberdiyeva Malika Karomat Qizi ◽  

We have considered Reissner-Nordstr¨om (RN) charged nonrotating black hole (BH).We have studied motion of charged particles around charged RN BH. It was found out that there are two boundary conditions for specific angular momentum of stable circular orbits corresponding to: innermost stable circular orbits (ISCO) and outermost stable circular orbits (OSCO) and accretion disk is originated between these two orbits. It was obtained the upper and lower limits for the value of particle’s charge which may exist in the accretion disk matter around the extreme charged Reissner Nordstr¨om black hole.


Sign in / Sign up

Export Citation Format

Share Document