scholarly journals Planetary nebulae and determination of the bulge–disk boundary

2012 ◽  
Vol 8 (S289) ◽  
pp. 375-378
Author(s):  
Roberto D. D. Costa ◽  
Oscar Cavichia ◽  
Walter J. Maciel

AbstractIn this paper, a sample of planetary nebulae in the Galaxy's inner-disk and bulge is used to find the galactocentric distance that optimally separates these two populations in terms of their abundances. Statistical distance scales were used to investigate the distribution of abundances across the disk–bulge interface, while a Kolmogorov–Smirnov test was used to find the distance at which the chemical properties of these regions separate optimally. The statistical analysis indicates that, on average, the inner population is characterized by lower abundances than the outer component. Additionally, for the α-element abundances, the inner population does not follow the disk's radial gradient toward the Galactic Center. Based on our results, we suggest a bulge–disk interface at 1.5 kpc, marking the transition between the bulge and the inner disk of the Galaxy as defined by the intermediate-mass population.

2009 ◽  
Vol 5 (H15) ◽  
pp. 790-790
Author(s):  
Roberto D.D. Costa ◽  
Walter J. Maciel

AbstractAbundance gradients are key parameters to constrain the chemical evolution of the galactic disk. In this review recent determinations for the radial gradient are described, including its slope as derived from different objects such as planetary nebulae, HII regions, cepheids, or B stars, and for different elements. Inner and outer limits for the radial gradient, as well as its time evolution, both related to the chemical evolution of the Galaxy, are also described. The possible existence of azimuthal and vertical gradients is also discussed.


2009 ◽  
Vol 5 (S265) ◽  
pp. 354-355
Author(s):  
Oscar Cavichia ◽  
Roberto D. D. Costa ◽  
Walter J. Maciel

AbstractNew abundances of planetary nebulae located towards the bulge of the Galaxy are derived based on observations made at LNA (Brazil). We present accurate abundances of the elements He, N, S, O, Ar, and Ne for 56 PNe located towards the galactic bulge. The data shows a good agreement with other results in the literature, in the sense that the distribution of the abundances is similar to those works. From the statistical analysis performed, we can suggest a bulge-disk interface at 2.2 kpc for the intermediate mass population, marking therefore the outer border of the bulge and inner border of the disk.


2009 ◽  
Vol 5 (S266) ◽  
pp. 482-482
Author(s):  
Xiaoying Pang ◽  
Chenggang Shu

AbstractThe WEBDA database of open clusters (hereafter OCs) in the Galaxy contains 970 OCs, of which 911 have age determinations, 920 have distance measurements, and 911 have color-excess data. Base on the statistical analysis of global properties of open clusters, we investigate disk properties such as the height above the Galactic plane. We find that old open clusters (age ≥ 1 Gyr) are preferentially located far from the Galactic plane with 〈|z|〉~394.5 pc. They lie in the outer part of the Galactic disk. The young open clusters are distributed in the Galactic plane almost symmetrically with respect to the Sun, with a scale height perpendicular to the Galactic plane of 50.5 pc. The age distribution of open clusters can be fit approximately with a two-component exponential decay function: one component has an age scale factor of 225.2 Myr, and the other consists of longer-lived clusters with an age scale of 1.8 Gyr, which are smaller than those derived by Janes & Phelps (1994) of 200 Myr and 4 Gyr for the young and old OCs, respectively. As a consequence of completeness effects, the observed radial distribution of OCs with respect to Galactocentric distance does not follow the expected exponential profile. Instead, it falls off both for regions external to the solar circle and more sharply towards the Galactic Center, which is probably due to giant molecular cloud disruption in the center. We simulate the effects of completeness, assuming that the observed distribution of the number of OCs with a given number of stars above the background is representative of the intrinsic distribution of OCs throughout the Galaxy. Two simulation models are considered, in which the intrinsic number of the observable stars are distributed (i) assuming the actual positions of the OCs in the sample, and (ii) random selection of OC positions. As a result, we derive completeness-corrected radial distributions which agree with an exponential disk throughout the observed Galactocentric distance in the range of 5–15 kpc, with scale lengths in the range of 1.6–2.8 kpc.


1995 ◽  
Vol 148 ◽  
pp. 276-279
Author(s):  
Francisco J. Fuenmayor

AbstractA determination of the C/M5+ ratio, as a function of the galactocentric distance, in the galactic disk is presented. These results are based upon previous determinations of the space density for cool carbon stars and for late giant M stars in the Milky Way. Most of these results were obtained from objective-prism surveys in the near infrared using mainly Schmidt-type telescopes. The ratio C/M5+ appears to increase from 0.05 to 0.25 in the galactic disk, from the galactic center outwards. A mean value of 0.15 of this ratio for the Galaxy is suggested. Correlations between the C/M5+ ratio and currently known metal abundance gradients in the galactic disk are discussed.


2021 ◽  
Vol 922 (2) ◽  
pp. 106
Author(s):  
J. J. Bernal ◽  
C. D. Sephus ◽  
L. M. Ziurys

Abstract The Galactic Habitable Zone (GHZ) is a region believed hospitable for life. To further constrain the GHZ, observations have been conducted of the J = 2 → 1 transitions of methanol (CH3OH) at 97 GHz, toward 20 molecular clouds located in the outer Galaxy (R GC = 12.9–23.5 kpc), using the 12 m telescope of the Arizona Radio Observatory. Methanol was detected in 19 out of 20 observed clouds, including sources as far as R GC = 23.5 kpc. Identification was secured by the measurement of multiple asymmetry and torsional components in the J = 2 → 1 transition, which were resolved in the narrow line profiles observed (ΔV 1/2 ∼ 1–3 km s−1). From a radiative transfer analysis, column densities for these clouds of N tot = 0.1–1.5 × 1013 cm−2 were derived, corresponding to fractional abundances, relative to H2, of f (CH3OH) ∼ 0.2–4.9 × 10−9. The analysis also indicates that these clouds are cold (T K ∼ 10–25 K) and dense (n(H2) ∼ 106 cm−3), as found from previous H2CO observations. The methanol abundances in the outer Galaxy are comparable to those observed in colder molecular clouds in the solar neighborhood. The abundance of CH3OH therefore does not appear to decrease significantly with distances from the Galactic Center, even at R GC ∼ 20–23 kpc. Furthermore, the production of methanol is apparently not affected by the decline in metallicity with galactocentric distance. These observations suggest that organic chemistry is prevalent in the outer Galaxy, and methanol and other organic molecules may serve to assess the GHZ.


2019 ◽  
Vol 627 ◽  
pp. A16 ◽  
Author(s):  
S. T. Zeegers ◽  
E. Costantini ◽  
D. Rogantini ◽  
C. P. de Vries ◽  
H. Mutschke ◽  
...  

Context. The composition and properties of interstellar silicate dust are not well understood. In X-rays, interstellar dust can be studied in detail by making use of the fine structure features in the Si K-edge. The features in the Si K-edge offer a range of possibilities to study silicon-bearing dust, such as investigating the crystallinity, abundance, and the chemical composition along a given line of sight. Aims. We present newly acquired laboratory measurements of the silicon K-edge of several silicate-compounds that complement our measurements from our earlier pilot study. The resulting dust extinction profiles serve as templates for the interstellar extinction that we observe. The extinction profiles were used to model the interstellar dust in the dense environments of the Galaxy. Methods. The laboratory measurements, taken at the Soleil synchrotron facility in Paris, were adapted for astrophysical data analysis and implemented in the SPEX spectral fitting program. The models were used to fit the spectra of nine low-mass X-ray binaries located in the Galactic center neighborhood in order to determine the dust properties along those lines of sight. Results. Most lines of sight can be fit well by amorphous olivine. We also established upper limits on the amount of crystalline material that the modeling allows. We obtained values of the total silicon abundance, silicon dust abundance, and depletion along each of the sightlines. We find a possible gradient of 0.06 ± 0.02 dex/kpc for the total silicon abundance versus the Galactocentric distance. We do not find a relation between the depletion and the extinction along the line of sight.


1977 ◽  
Vol 45 ◽  
pp. 79-101
Author(s):  
Jean Audouze

AbstractFrom observations of the galactic center using various techniques radioastronomy, millimeter waves (molecules) – infrared and gamma rays, the interstellar matter of this region* appears to have been strongly processed into stars : the gas density is much lower than in the solar neighbourhood. From CO measurements one knows that there are many molecular clouds such as SgrB2 where stars are forming now. From IR measurements, there are some indication that low mass stars are relatively more numerous in such regions than in the external regions of the galaxy. Finally the heavy element abundances show three important features (i) the possibility of strong enhancements in elements such as N and in a less extent 0 and Ne (the so called abundance gradients), (ii) Some specific enhancements of isotopes such43C,44N and also47O relative to42C,45N and43O (iii) Deuterium seems to have a lower abundance than in other parts of the galaxy such as the solar neighbourhood. Simple models of chemical evolution have been designed to account for such features and are rewiewed here.


2000 ◽  
Vol 198 ◽  
pp. 204-213
Author(s):  
W. J. Maciel

Two aspects of the chemical evolution of 4He in the Galaxy are considered on the basis of a sample of disk planetary nebulae by the application of corrections due to the contamination of 4He from the progenitor stars. First, the He/H radial gradient is analyzed, and then, the helium to heavy element enrichment ratio is determined for metallicities up to the solar value.


1987 ◽  
Vol 117 ◽  
pp. 33-33
Author(s):  
G. Gilmore ◽  
R. Wyse

Analysis of the detailed photometric, kinematic and chemical properties of stellar populations constrains the formation history of the Galaxy. We have completed a photometric survey and initiated a spectroscopic survey, obtaining radial velocities and abundances for volume complete samples of spheroid dwarfs in situ, to distances of a few kpc. Three fields under study are those for which Chiu (Ap. J. Suppl. 1980) obtained proper motions - SA 57 (NGP), SA51 (anticenter field) and SA68. Two of these fields are on the sun - Galactic center meridional plane (SA57 and SA51) so that (U,V) and (V,W) components of space motion respectively may be derived on the basis of the proper motions alone, once distances have been obtained. Our initial distance estimates are from Chiu's photometry and population classes, which are based on the position of the star on the reduced proper motion diagram.


2011 ◽  
Vol 7 (S283) ◽  
pp. 438-439
Author(s):  
Jackie B. Milingo ◽  
Richard B. C. Henry ◽  
Karen B. Kwitter ◽  
Bruce Balick

AbstractWe examine the abundance gradient in the Milky Way disk via homogeneously determined data for 124 Galactic planetary nebulae (PNe). We present recent results from a detailed regression analysis of the O gradient. With O, Ne, S, Cl, and Ar available and a range of galactocentric distance (Rg) from 0.9 to 21 kpc, we present additional exploration of the disk radial gradient by statistically analyzing a series of short segments of increasing average Rg.


Sign in / Sign up

Export Citation Format

Share Document