scholarly journals V4046 Sgr: X-rays from accretion shock

2013 ◽  
Vol 9 (S302) ◽  
pp. 46-47
Author(s):  
C. Argiroffi ◽  
A. Maggio ◽  
T. Montmerle ◽  
D. Huenemoerder ◽  
E. Alecian ◽  
...  

AbstractWe present results of the X-ray monitoring of V4046 Sgr, a close classical T Tauri star binary, with both components accreting material. The 360 ks long XMM observation allowed us to measure the plasma densities at different temperatures, and to check whether and how the density varies with time. We find that plasma at temperatures of 1–4 MK has high densities, and we observe correlated and simultaneous density variations of plasma, probed by O VII and Ne IX triplets. These results strongly indicate that all the inspected He-like triplets are produced by high-density plasma heated in accretion shocks, and located at the base of accretion flows.

2011 ◽  
Vol 530 ◽  
pp. A1 ◽  
Author(s):  
C. Argiroffi ◽  
E. Flaccomio ◽  
J. Bouvier ◽  
J.-F. Donati ◽  
K. V. Getman ◽  
...  
Keyword(s):  
X Ray ◽  
T Tauri ◽  

Author(s):  
K Chatterjee ◽  
S Markoff ◽  
J Neilsen ◽  
Z Younsi ◽  
G Witzel ◽  
...  

Abstract Sgr A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrotron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics (GRMHD) code H-AMR to perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing (GRRT) code BHOSS to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ∼60 hr lightcurves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the lightcurves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetised accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms per cent amplitudes, $\gtrsim 150{{\ \rm per\ cent}}$ both in the NIR and the X-rays, with changes in the accretion rate driving the 230 GHz flux variability, in agreement with Sgr A* observations.


1989 ◽  
Vol 104 (2) ◽  
pp. 139-142 ◽  
Author(s):  
F. Giovannelli ◽  
D. Castaldo ◽  
E. Covino ◽  
A.A. Vittone ◽  
C. Rossi

AbstractA long term multifrequency campaign on the T Tauri star RU Lupi has been carried out in the X-Ray, UV optical and IR spectral regions with ASTRON and IUE satellites and ESO 1.5 m+IDS, 1.4 m CAT, 0.5 m UBVRI and 1 m IR telescopes, respectively.We present two flare-like events occurred on April 17, 1984 and June 30, 1986. The first one was detected only in the UV, clue to lack the of simultaneous observations in other spectral regions. The second one was observed in UV, optical and IR regions showing a maximum roughly in the U band A comparison of the whole energy distribution of this event with that of a quiescent state observed on June 27 shows a flux enhancement of (89 ± 2)%. A detailed analysis of UV continuum and lines, namely N V, C I, CII, CIV, Si II and Si IV, shows that ihe surfaces fluxes of RU Lupi are always larger than those observed on typical flare stars and on the Sun by a factor of roughly 2 and 3 orders of magnitude, respectively. This fact allows us to conclude that RU Lupi activity cannot be explained even invoking a complete coverage by solar-like plages. On the contrary a patchy distribution of the emitting regions could explain the observed behaviour of this active star.


2018 ◽  
Vol 610 ◽  
pp. A34 ◽  
Author(s):  
D. Chuard ◽  
R. Terrier ◽  
A. Goldwurm ◽  
M. Clavel ◽  
S. Soldi ◽  
...  

Context. For a decade now, evidence has accumulated that giant molecular clouds located within the central molecular zone of our Galaxy reflect X-rays coming from past outbursts of the Galactic supermassive black hole. However, the number of illuminating events as well as their ages and durations are still unresolved questions. Aims. We aim to reconstruct parts of the history of the supermassive black hole Sgr A★ by studying this reflection phenomenon in the molecular complex Sgr C and by determining the line-of-sight positions of its main bright substructures. Methods. Using observations made with the X-ray observatories XMM-Newton and Chandra and between 2000 and 2014, we investigated the variability of the reflected emission, which consists of a Fe Kα line at 6.4 keV and a Compton continuum. We carried out an imaging and a spectral analysis. We also used a Monte Carlo model of the reflected spectra to constrain the line-of-sight positions of the brightest clumps, and hence to assign an approximate date to the associated illuminating events. Results. We show that the Fe Kα emission from Sgr C exhibits significant variability in both space and time, which confirms its reflection origin. The most likely illuminating source is Sgr A★. On the one hand, we report two distinct variability timescales, as one clump undergoes a sudden rise and fall in about 2005, while two others vary smoothly throughout the whole 2000–2014 period. On the other hand, by fitting the Monte Carlo model to the data, we are able to place tight constraints on the 3D positions of the clumps. These two independent approaches provide a consistent picture of the past activity of Sgr A★, since the two slowly varying clumps are located on the same wavefront, while the third (rapidly varying) clump corresponds to a different wavefront, that is, to a different illuminating event. Conclusions. This work shows that Sgr A★ experienced at least two powerful outbursts in the past 300 yrs, and for the first time, we provide an estimation of their age. Extending this approach to other molecular complexes, such as Sgr A, will allow this two-event scenario to be tested further.


1988 ◽  
Vol 331 ◽  
pp. L113 ◽  
Author(s):  
G. Tagliaferri ◽  
P. Giommi ◽  
L. Angelini ◽  
J. P. Osborne ◽  
R. Pallavicini
Keyword(s):  
X Ray ◽  

1995 ◽  
Vol 151 ◽  
pp. 158-163
Author(s):  
Alberto J. Castro-Tirado ◽  
Søren Brandt ◽  
Niels Lund ◽  
Igor Lapshov ◽  
Rashid Sunyaev

AbstractDuring 1990-92, the WATCH all-sky X-ray monitor on GRANAT has discovered 6 short-duration X-ray transients. We discuss their possible relationship to peculiar stars. Only one source, GRS 1100-77 seems to be related to a T Tauri star.


2019 ◽  
Vol 486 (1) ◽  
pp. 1094-1122 ◽  
Author(s):  
Jonathan Mackey ◽  
Stefanie Walch ◽  
Daniel Seifried ◽  
Simon C O Glover ◽  
Richard Wünsch ◽  
...  

ABSTRACT Sources of X-rays such as active galactic nuclei and X-ray binaries are often variable by orders of magnitude in luminosity over time-scales of years. During and after these flares the surrounding gas is out of chemical and thermal equilibrium. We introduce a new implementation of X-ray radiative transfer coupled to a time-dependent chemical network for use in 3D magnetohydrodynamical simulations. A static fractal molecular cloud is irradiated with X-rays of different intensity, and the chemical and thermal evolution of the cloud are studied. For a simulated $10^5\, \mathrm{M}_\odot$ fractal cloud, an X-ray flux <0.01 erg cm−2 s−1 allows the cloud to remain molecular, whereas most of the CO and H2 are destroyed for a flux of ≥1 erg cm−2 s−1. The effects of an X-ray flare, which suddenly increases the X-ray flux by 105×, are then studied. A cloud exposed to a bright flare has 99 per cent of its CO destroyed in 10–20 yr, whereas it takes >103 yr for 99 per cent of the H2 to be destroyed. CO is primarily destroyed by locally generated far-UV emission from collisions between non-thermal electrons and H2; He+ only becomes an important destruction agent when the CO abundance is already very small. After the flare is over, CO re-forms and approaches its equilibrium abundance after 103–105 yr. This implies that molecular clouds close to Sgr A⋆ in the Galactic Centre may still be out of chemical equilibrium, and we predict the existence of clouds near flaring X-ray sources in which CO has been mostly destroyed but H is fully molecular.


2018 ◽  
Vol 615 ◽  
pp. A124 ◽  
Author(s):  
S. Ustamujic ◽  
S. Orlando ◽  
R. Bonito ◽  
M. Miceli ◽  
A. I. Gómez de Castro

Context. Several observations of stellar jets show evidence of X-ray emitting shocks close to the launching site. In some cases, including young stellar objects (YSOs) at different stages of evolution, the shocked features appear to be stationary. We study two cases, both located in the Taurus star-forming region. HH 154, the jet originating from the embedded binary Class 0/I protostar IRS 5, and the jet associated with DG Tau, a more evolved Class II disk-bearing source or classical T Tauri star (CTTS). Aims. We investigate the effect of perturbations in X-ray emitting stationary shocks in stellar jets and the stability and detectability in X-rays of these shocks, and we explore the differences in jets from Class 0 to Class II sources. Methods. We performed a set of 2.5D magnetohydrodynamic numerical simulations that model supersonic jets ramming into a magnetized medium. The jet is formed of two components: a continuously driven component that forms a quasi-stationary shock at the base of the jet and a pulsed component consisting of blobs perturbing the shock. We explored different parameters for the two components. We studied two cases: HH 154, a light jet (less dense than the ambient medium), and a heavy jet (denser than the ambient medium) associated with DG Tau. We synthesized the count rate from the simulations and compared these data with available Chandra observations. Results. Our model is able to reproduce the observed jet properties at different evolutionary phases (in particular, for HH 154 and DG Tau) and can explain the formation of X-ray emitting quasi-stationary shocks observed at the base of jets in a natural way. The jet is collimated by the magnetic field forming a quasi-stationary shock at the base which emits in X-rays even when perturbations formed by a train of blobs are present. We found similar collimation mechanisms dominating in both heavy and light jets. Conclusions. We derived the physical parameters that can give rise to X-ray emission consistent with observations of HH 154 and DG Tau. We have also performed a wide exploration of the parameter space characterizing the model; this can be a useful tool to study and diagnose the physical properties of YSO jets over a broad range of physical conditions, from embedded to disk-bearing sources. We show that luminosity does not change significantly in variable jet models for the range of parameters explored. Finally, we provide an estimation of the maximum perturbations that can be present in HH 154 and DG Tau taking into account the available X-ray observations.


2020 ◽  
Vol 635 ◽  
pp. A53 ◽  
Author(s):  
R. Franz ◽  
G. Picogna ◽  
B. Ercolano ◽  
T. Birnstiel

Context. X-ray- and extreme ultraviolet (XEUV) driven photoevaporative winds acting on protoplanetary disks around young T Tauri stars may crucially impact disk evolution, affecting both gas and dust distributions. Aims. We investigate the dust entrainment in XEUV-driven photoevaporative winds and compare our results to existing magnetohydrodynamic and EUV-only models. Methods. We used a 2D hydrodynamical gas model of a protoplanetary disk irradiated by both X-ray and EUV spectra from a central T Tauri star to trace the motion of passive Lagrangian dust grains of various sizes. The trajectories were modelled starting at the disk surface in order to investigate dust entrainment in the wind. Results. For an X-ray luminosity of LX = 2 × 1030 erg s−1 emitted by a M* = 0.7 M⊙ star, corresponding to a wind mass-loss rate of Ṁw ≃ 2.6 × 10−8 M⊙ yr−1, we find dust entrainment for sizes a0 ≲ 11 μm (9 μm) from the inner 25 AU (120 AU). This is an enhancement over dust entrainment in less vigorous EUV-driven winds with Ṁw ≃ 10−10 M⊙ yr−1. Our numerical model also shows deviations of dust grain trajectories from the gas streamlines even for μm-sized particles. In addition, we find a correlation between the size of the entrained grains and the maximum height they reach in the outflow. Conclusions. X-ray-driven photoevaporative winds are expected to be dust-rich if small grains are present in the disk atmosphere.


Sign in / Sign up

Export Citation Format

Share Document