scholarly journals A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts

2014 ◽  
Vol 10 (S306) ◽  
pp. 262-265
Author(s):  
Mariana Penna-Lima ◽  
Martín Makler ◽  
Carlos A. Wuensche

AbstractModels for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey (z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In the literature, some cosmological analyses are carried out using small cluster catalogs (tens to hundreds), like in Sunyaev-Zel'dovich (SZ) surveys. However, it is not guaranteed that maximum likelihood estimators of cosmological parameters are unbiased in this scenario. In this work we study different estimators of the cold dark matter density parameter Ωc, σ8 and the dark energy equation of state parameter w0 obtained from cluster abundance. Using an unbinned likelihood for cluster number counts and the Monte Carlo approach, we determine the presence of bias and how it varies with the size of the sample. Our fiducial models are based on the South Pole Telescope (SPT). We show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity.

2018 ◽  
Vol 614 ◽  
pp. A13 ◽  
Author(s):  
Laura Salvati ◽  
Marian Douspis ◽  
Nabila Aghanim

The thermal Sunyaev-Zel’dovich (tSZ) effect is one of the recent probes of cosmology and large-scale structures. We update constraints on cosmological parameters from galaxy clusters observed by the Planck satellite in a first attempt to combine cluster number counts and the power spectrum of hot gas; we used a new value of the optical depth and, at the same time, sampling on cosmological and scaling-relation parameters. We find that in the ΛCDM model, the addition of a tSZ power spectrum provides small improvements with respect to number counts alone, leading to the 68% c.l. constraints Ωm = 0.32  ± 0.02, σ8 = 0.76  ± 0.03, and σ8(Ωm/0.3)1/3 = 0.78  ± 0.03 and lowering the discrepancy with results for cosmic microwave background (CMB) primary anisotropies (updated with the new value of τ) to ≃1.8σ on σ8. We analysed extensions to the standard model, considering the effect of massive neutrinos and varying the equation of state parameter for dark energy. In the first case, we find that the addition of the tSZ power spectrum helps in improving cosmological constraints with respect to number count alone results, leading to the 95% upper limit ∑ mν < 1.88 eV. For the varying dark energy equation of state scenario, we find no important improvements when adding tSZ power spectrum, but still the combination of tSZ probes is able to provide constraints, producing w = −1.0 ± 0.2. In all cosmological scenarios, the mass bias to reconcile CMB and tSZ probes remains low at (1 − b) ≲ 0.67 as compared to estimates from weak lensing and X-ray mass estimate comparisons or numerical simulations.


Author(s):  
Anirudh Pradhan ◽  
Archana Dixit ◽  
Vinod Kumar Bhardwaj

We have analyzed the Barrow holographic dark energy (BHDE) in the framework of flat FLRW universe by considering the various estimations of Barrow exponent △. Here, we define BHDE, by applying the usual holographic principle at a cosmological system, for utilizing the Barrow entropy rather than the standard Bekenstein–Hawking. To understand the recent accelerated expansion of the universe, consider the Hubble horizon as the IR cutoff. The cosmological parameters, especially the density parameter [Formula: see text], the equation of the state parameter [Formula: see text], energy density [Formula: see text] and the deceleration parameter [Formula: see text] are studied in this paper and found the satisfactory behaviors. Moreover we additionally focus on the two geometric diagnostics, the statefinder [Formula: see text] and [Formula: see text] to discriminant BHDE model from the [Formula: see text]CDM model. Here we determined and plotted the trajectories of evolution for statefinder [Formula: see text], [Formula: see text] and [Formula: see text] diagnostic plane to understand the geometrical behavior of the BHDE model by utilizing Planck 2018 observational information. Finally, we have explored the new Barrow exponent △, which strongly affects the dark energy equation of state that can lead it to lie in the quintessence regime, phantom regime and exhibits the phantom-divide line during the cosmological evolution.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Vipin Chandra Dubey ◽  
Umesh Kumar Sharma ◽  
Abdulla Al Mamon

In this work, we construct an interacting model of the Rényi holographic dark energy in the Brans-Dicke theory of gravity using Rényi entropy in a spatially flat Friedmann-Lemaître-Robertson-Walker Universe considering the infrared cut-off as the Hubble horizon. In this setup, we then study the evolutionary history of some important cosmological parameters, in particular, deceleration parameter, Hubble parameter, equation of state parameter, and Rényi holographic dark energy density parameter in both nonflat Universe and flat Universe scenarios and also observe satisfactory behaviors of these parameters in the model. We find that during the evolution, the present model can give rise to a late-time accelerated expansion phase for the Universe preceded by a decelerated expansion phase for both flat and nonflat cases. Moreover, we obtain ω D → − 1 as z → − 1 , which indicates that this model behaves like the cosmological constant at the future. The stability analysis for the distinct estimations of the Rényi parameter δ and coupling coefficient b 2 has been analyzed. The results indicate that the model is stable at the late time.


Author(s):  
Wajiha Javed ◽  
Iqra Nawazish ◽  
Fatima Shahid ◽  
Nimra Irshad

Abstract This paper is devoted to explore the cosmic evolution of non-flat Friedmann Robertson Walker universe through generalized ghost pilgrim dark energy model in the background of f(R) gravity. For this purpose, we consider two well known scale factors, i.e., power-law and unified scale factors in terms of red shift parameter. For these scale factors, we reconstruct the given dark energy model in f(R) gravity and determine its stability/instability through squared speed of sound parameter. In order to discuss the behavior of reconstructed and dark energy models, we evaluate well known cosmological parameter such as equation of state parameter along with $$\omega $$ω–$$\omega '$$ω′ plane. In addition to this, we also investigate compatibility of new models with standard cosmological models through state-finder parameters. The density parameter is formulated for both ordinary matter as well as dark energy components and results are compared with Planck 2018 constraints. It is concluded that cosmological parameters reveal consistency with recent observations while the value of density parameter suggested by Planck 2018 is achieved by power-law scale factor in most of the cases as compared to unified scale factor.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950080
Author(s):  
A. Sheykhi ◽  
S. Ghaffari ◽  
H. Moradpour

We study the cosmological consequences of the ghost models of dark energy (DE) in the framework of Hořava–Lifshitz gravity. We calculate the equation-of-state parameter, the deceleration parameter, the classical stability and the dimensionless density parameter of the models in both noninteracting and interacting scenarios. We find that, for some values of the parameter, this model can admit a transition from the deceleration phase to the accelerated phase around [Formula: see text], while at the late time ([Formula: see text]) we have [Formula: see text] meaning that this model mimics a cosmological constant. We find that in the setup of Hořava–Lifshitz gravity, ghost dark energy (GDE) models are classically unstable. We observe that unlike the generalized ghost dark energy (GGDE), the ghost dark energy cannot provide proper behavior for all the cosmological parameters simultaneously, with the same values of the models’ couplings.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani

The purpose of this paper is to study the cosmological evolution of the universe in the framework of dynamical Chern-Simons modified gravity. We take pilgrim dark energy model with Hubble and event horizons in interacting scenario with cold dark matter. For this scenario, we discuss cosmological parameters such as Hubble and equation of state and cosmological plane likeωϑ-ωϑ′and squared speed of sound. It is found that Hubble parameter approaches the ranges75-0.5+0.5(foru=2) and (74, 74.30) (foru=1,-1,-2) for Hubble horizon pilgrim dark energy. It implies the ranges74.80-0.005+0.005(foru=2) and (73.4, 74) (foru=-2) for event horizon pilgrim dark energy. The equation of state parameter provides consistent ranges with different observational schemes. Also,ωϑ-ωϑ′planes lie in the range (ωϑ=-1.13-0.25+0.24,ωϑ′<1.32). The squared speed of sound shows stability for all present models in the present scenario. We would like to mention here that our results of various cosmological parameters show consistency with different observational data like Planck, WP, BAO,H0, SNLS, and WMAP.


1998 ◽  
Vol 188 ◽  
pp. 314-314
Author(s):  
Tetsu Kitayama ◽  
Yasushi Suto

We find that the observed logN-logS relation of X-ray clusters (Ebeling et al. 1997; Rosati et al. 1997) can be reproduced remarkably well with a certain range of values for the fluctuation amplitude σ8 and the cosmological density parameter Ω0 in cold dark matter (CDM) universes (Kitayama & Suto 1997). The 1σ confidence limits on σ8 in the CDM models with n = 1 and h = 0.7 are expressed as (0.54 ± 0.02)Ω−0.35-0.82Ω0+0.55Ω200 (λ0 = 1 - Ω0) and (0.54 ± 0.02) Ω−0.28-0.91Ω0+0.68Ω200 (λ0 = 0), where n is the primordial spectral index, and h and λ0 are the dimensionless Hubble and cosmological constants. The errors quoted above indicate the statistical ones from the observed logN-logS only, and the systematic uncertainty from our theoretical modelling of X-ray flux in the best-fit value of σ8 is about 15%. In the case of n = 1, we find that the CDM models with (Ω0, λ0, h, σ8) ≃ (0.3, 0.7, 0.7, 1) and (0.45, 0, 0.7, 0.8) simultaneously account for the cluster logN-logS, X-ray temperature functions, and the normalization from the COBE 4 year data. The derived values assume the observations are without systematic errors, and we discuss in details other theoretical uncertainties which may change the limits on Ω0 and σ8 from the logN-logS relation. We have shown the power of this new approach which will become a strong tool as the observations attain more precision.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Vijaya Santhi ◽  
Y. Sobhanbabu

AbstractIn this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter $$\omega _t$$ ω t , squared sound speed $$v_s^2$$ v s 2 , om-diagnostic parameter Om(z) and scalar field $$\phi $$ ϕ ) and well-known cosmological planes (namely $$\omega _t-\omega _t^{'}$$ ω t - ω t ′ plane, where $$'$$ ′ denotes derivative with respect to ln(a) and statefinders ($$r-s$$ r - s ) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.


10.14311/1466 ◽  
2011 ◽  
Vol 51 (6) ◽  
Author(s):  
J. Hölzl ◽  
J. Wilms ◽  
I. Kreykenbohm ◽  
Ch. Schmid ◽  
Ch. Grossberger ◽  
...  

The eROSITA instrument on board the Russian Spectrum Roentgen Gamma spacecraft, which will be launched in 2013,will conduct an all sky survey in X-rays. A main objective of the survey is to observe galaxy clusters in order to constrain cosmological parameters and to obtain further knowledge about dark matter and dark energy. For the simulation of the eROSITA survey we present a Monte-Carlo code generating a mock catalogue of galaxy clusters distributed accordingto the mass function of [1]. The simulation generates the celestial coordinates as well as the cluster mass and redshift. From these parameters, the observed intensity and angular diameter are derived. These are used to scale Chandra cluster images as input for the survey-simulation.


2020 ◽  
Vol 494 (2) ◽  
pp. 2183-2190
Author(s):  
Stéphane Fay

ABSTRACT We examine the possibility that Universe expansion be made of some Λ-cold dark matter (ΛCDM) expansions repeating periodically, separated by some inflation- and radiation-dominated phases. This so-called ΛCDM periodic cosmology is motivated by the possibility that inflation and the present phase of accelerated expansion be due to the same dark energy. Then, in a phase space showing the variation of matter density parameter Ωm with respect to this of the radiation Ωr, the curve Ωm(Ωr) looks like a closed trajectory that Universe could run through forever. In this case, the end of the expansion acceleration of the ΛCDM phase is the beginning of a new inflation phase. We show that such a scenario implies the coupling of matter and/or radiation to dark energy. We consider the simplest of these ΛCDM periodic models i.e. a vacuum energy coupled to radiation. From matter domination phase to today, it behaves like a ΛCDM model, then followed by an inflation phase. But a sudden and fast decay of the dark energy into radiation periodically ends the expansion acceleration. This leads to a radiation-dominated Universe preceding a new ΛCDM type expansion. The model is constrained with Markov Chain Monte Carlo simulations using supernovae, Hubble expansion, Baryon Acoustic Oscillations (BAO), and cosmic microwave background data and fits the data as well as the ΛCDM one.


Sign in / Sign up

Export Citation Format

Share Document