scholarly journals The starburst galaxy NGC 253 revisited by H.E.S.S. and Fermi-LAT

2018 ◽  
Vol 617 ◽  
pp. A73 ◽  
Author(s):  
◽  
H. Abdalla ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
E. O. Angüner ◽  
...  

Context. NGC 253 is one of only two starburst galaxies found to emit γ-rays from hundreds of MeV to multi-TeV energies. Accurate measurements of the very-high-energy (VHE; E > 100 GeV) and high-energy (HE; E > 60 MeV) spectra are crucial to study the underlying particle accelerators, probe the dominant emission mechanism(s) and to study cosmic-ray interaction and transport. Aims. The measurement of the VHE γ-ray emission of NGC 253 published in 2012 by H.E.S.S. was limited by large systematic uncertainties. Here, the most up to date measurement of the γ-ray spectrum of NGC 253 is investigated in both HE and VHE γ-rays. Assuming a hadronic origin of the γ-ray emission, the measurement uncertainties are propagated into the interpretation of the accelerated particle population. Methods. The data of H.E.S.S. observations are reanalysed using an updated calibration and analysis chain. The improved Fermi–LAT analysis employs more than 8 yr of data processed using pass 8. The cosmic-ray particle population is evaluated from the combined HE–VHE γ-ray spectrum using NAIMA in the optically thin case. Results. The VHE γ-ray energy spectrum is best fit by a power-law distribution with a flux normalisation of (1.34 ± 0.14stat ± 0.27sys) × 10−13 cm−2 s−1 TeV1 at 1 TeV – about 40% above, but compatible with the value obtained in Abramowski et al. (2012). The spectral index Γ = 2.39 ± 0.14stat ± 0.25sys is slightly softer than but consistent with the previous measurement within systematic errors. In the Fermi energy range an integral flux of F(E > 60 MeV) = (1.56 ± 0.28stat ± 0.15sys) × 10−8 cm−2 s−1 is obtained. At energies above ∼3 GeV the HE spectrum is consistent with a power-law ranging into the VHE part of the spectrum measured by H.E.S.S. with an overall spectral index Γ = 2.22 ± 0.06stat. Conclusions. Two scenarios for the starburst nucleus are tested, in which the gas in the starburst nucleus acts as either a thin or a thick target for hadronic cosmic rays accelerated by the individual sources in the nucleus. In these two models, the level to which NGC 253 acts as a calorimeter is estimated to a range of fcal = 0.1 to 1 while accounting for the measurement uncertainties. The presented spectrum is likely to remain the most accurate measurements until the Cherenkov Telescope Array (CTA) has collected a substantial set of data towards NGC 253.

2021 ◽  
Author(s):  
Wen Wang ◽  
Linghua Wang ◽  
Sam Krucker ◽  
Glenn M. Mason ◽  
Yang Su ◽  
...  

<p><span>We investigate 16 solar energetic electron (SEE) events measured by WIND/3DP with a double power-law spectrum and the associated western hard X-ray (HXR) flares measured by RHESSI with good count statistics, from 2002 February to 2016 December. In all 16 cases, the presence of an SEE power-law spectrum extending down to </span><span>6</span><span>5 keV at 1 AU implies that the SEE source would be high in the corona, at a heliocentric distance of </span><span>></span><span>1.3 </span><span>solar radii</span><span>, while the footpoint or footpoint-like emissions shown in HXR images suggest that the observed HXRs are likely produced mainly by thick target bremsstrahlung processes very low in the corona. </span><span>We find that in 8 cases (the other 8 cases), the power-law spectral index of HXR-producing electrons, estimated under the relativistic thick-target bremsstrahlung model, is significantly larger than (similar to) the observed high-energy spectral index of SEEs, with a positive correlation. In addition, the estimated number of SEEs is only </span><span>∼</span><span>10</span><span>-</span><span>4 </span><span>- </span><span>10</span><span>-</span><span>2 </span><span>of the estimated number of HXRproducing electrons at energies above 30 keV, but also with a positive correlation. </span><span>These results suggest that in these cases, SEEs are likely formed by upward-traveling electrons from an acceleration source high in the corona, while their downward-traveling counterparts may undergo a secondary acceleration before producing HXRs via thick-target bremsstrahlung processes. In addition, the associated </span><span>3</span><span>He</span><span>=</span><span>4</span><span>He ratio is positively correlated with </span><span>the observed high-energy spectral index of SEEs</span><span>, indicating a possible relation of the </span><span>3</span><span>He ion acceleration with high-energy SEEs</span></p>


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 48 ◽  
Author(s):  
Peter L. Biermann ◽  
Philipp P. Kronberg ◽  
Michael L. Allen ◽  
Athina Meli ◽  
Eun-Suk Seo

We propose that the high energy Cosmic Ray particles up to the upturn commonly called the ankle, from around the spectral turn-down commonly called the knee, mostly come from Blue Supergiant star explosions. At the upturn, i.e., the ankle, Cosmic Rays probably switch to another source class, most likely extragalactic sources. To show this we recently compiled a set of Radio Supernova data where we compute the magnetic field, shock speed and shock radius. This list included both Blue and Red Supergiant star explosions; both data show the same magnetic field strength for these two classes of stars despite very different wind densities and velocities. Using particle acceleration theory at shocks, those numbers can be transformed into characteristic ankle and knee energies. Without adjusting any free parameters both of these observed energies are directly indicated by the supernova data. In the next step in the argument, we use the Supernova Remnant data of the starburst galaxy M82. We apply this analysis to Blue Supergiant star explosions: The shock will race to their outer edge with a magnetic field that is observed to follow over several orders of magnitude B ( r ) × r ∼ c o n s t . , with in fact the same magnetic field strength for such stellar explosions in our Galaxy, and other galaxies including M82. The speed is observed to be ∼0.1 c out to about 10 16 cm radius in the plasma wind. The Supernova shock can run through the entire magnetic plasma wind region at full speed all the way out to the wind-shell, which is of order parsec scale in M82. We compare and identify the Cosmic Ray spectrum in other galaxies, in the starburst galaxy M82 and in our Galaxy with each other; we suggest how Blue Supergiant star explosions can provide the Cosmic Ray particles across the knee and up to the ankle energy range. The data from the ISS-CREAM (Cosmic Ray Energetics and Mass Experiment at the International Space Station) mission will test this cosmic ray concept which is reasonably well grounded in two independent radio supernova data sets. The next step in developing our understanding will be to obtain future more accurate Cosmic Ray data near to the knee, and to use unstable isotopes of Cosmic Ray nuclei at high energy to probe the “piston” driving the explosion. We plan to incorporate these data with the physics of the budding black hole which is probably forming in each of these stars.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Hiromasa Suzuki ◽  
Aya Bamba ◽  
Ryo Yamazaki ◽  
Yutaka Ohira

Abstract In the current decade, GeV/TeV gamma-ray observations of several supernova remnants (SNRs) have implied that accelerated particles are escaping from their acceleration sites. However, when and how they escape from the SNR vicinities are yet to be understood. Recent studies have suggested that the particle escape might develop with thermal plasma ages of the SNRs. We present a systematic study on the time evolution of particle escape using thermal X-ray properties and gamma-ray spectra using 38 SNRs associated with GeV/TeV gamma-ray emissions. We conducted spectral fittings on the gamma-ray spectra using exponential cutoff power-law and broken power-law models to estimate the exponential cutoff or the break energies, both of which are indicators of particle escape. Plots of the gamma-ray cutoff/break energies over the plasma ages show similar tendencies to those predicted by analytical/numerical calculations of particle escape under conditions in which a shock is interacting with thin interstellar medium or clouds. The particle escape timescale is estimated as ∼100 kyr from the decreasing trends of the total energy of the confined protons with the plasma age. The large dispersions of the cutoff/break energies in the data may suggest an intrinsic variety of particle escape environments. This might be the cause of the complicated Galactic cosmic ray spectral shape measured on Earth.


2007 ◽  
Vol 16 (02n03) ◽  
pp. 521-526
Author(s):  
A. L. DOS SANTOS ◽  
L. P. L. DE OLIVEIRA ◽  
B. E. J. BODMANN ◽  
M. T. VILHENA

The present article is an attempt to provide a parametrization for particle acceleration probabilities in the very high energy range combining a discrete fractal scheme for interaction probabilities and the observational fact of a power law energy spectrum for cosmic ray particles.


Author(s):  
Peter Biermann ◽  
Philipp Kronberg ◽  
Michael Allen ◽  
Athina Meli ◽  
Eun-Suk Seo

We propose that the high energy Cosmic Ray particles around the spectral turn-down commonly called the {\it knee} and up to the upturn, commonly called the {\it ankle}, mostly come from Blue Super Giant star explosions. At the upturn, i.e. the {\it ankle}, Cosmic Rays probably switch to another source class, most likely extragalactic sources. To show this we recently compiled a set of Radio Supernova data to list the magnetic field, shock speed and radius scale (Biermann et al. 2018) \cite{Biermann18}. Using particle acceleration theory at shocks, those numbers can be transformed into characteristic {\it knee} and {\it ankle} energies. Without adjusting any free parameters both of these observed energies are directly indicated by the supernova data. We now proceed to the next step in the argument, and use the Supernova Remnant data of the starburst galaxy M82. Assuming that they are Blue Supergiant star explosions, the shock will race to their outer edge with a magnetic field that follows ${B (r) \, r \, \sim \, const.}$. We argue that the shock runs through the entire magnetic plasma wind region at full speed all the way out to the wind-shell, which is of order parsec scale. The speed is observed to be $\sim \, 0.1 \, c$ at about ${10^{16} \, {\rm cm}}$ radius in the plasma wind. This demonstrates how Blue Supergiant star explosions can provide the Cosmic Ray particles across the {\it knee} and up to the {\it ankle} energy range. The data from the CREAM (Cosmic Ray Energetics and Mass Experiment) mission will test this cosmic ray concept which is reasonably well grounded in two independent radio supernova data sets. The next step in developing our understanding is to obtain accurate Cosmic Ray data near to the {\it knee}, and use unstable isotopes of Cosmic Ray nuclei at high energy to probe the "piston" driving the explosion. We plan to combine these data with the physics of the budding black hole which is probably forming in each of these stars to learn more.


2021 ◽  
Vol 923 (1) ◽  
pp. 24
Author(s):  
Nanase Harada ◽  
Sergio Martín ◽  
Jeffrey G. Mangum ◽  
Kazushi Sakamoto ◽  
Sebastien Muller ◽  
...  

Abstract Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1−0) integrated intensity shows its association with “superbubbles,” cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∼10–150, and the fractional abundance of HOC+ relative to H2 is ∼1.5 × 10−11–6 × 10−10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G 0 ≳ 103 if the maximum visual extinction is ≳5, or a cosmic-ray ionization rate of ζ ≳ 10−14 s−1 (3–4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback.


2019 ◽  
Vol 492 (1) ◽  
pp. 796-803
Author(s):  
Pranjupriya Goswami ◽  
Atreyee Sinha ◽  
Sunil Chandra ◽  
Ranjeev Misra ◽  
Varsha Chitnis ◽  
...  

ABSTRACT We report the analysis of simultaneous multiwavelength data of the high-energy-peaked blazar RGB J0710 + 591 from the Large Area X-ray Proportional Counters, Soft X-ray focusing Telescope, and Ultraviolet Imaging Telescope (UVIT) instruments onboard AstroSat. The wide band X-ray spectrum (0.35–30 keV) is modelled as synchrotron emission from a non-thermal distribution of high-energy electrons. The spectrum is unusually curved, with a curvature parameter βp ∼ 6.4 for a log parabola particle distribution, or a high-energy spectral index p2 > 4.5 for a broken power-law distribution. The spectrum shows more curvature than an earlier quasi-simultaneous analysis of Swift–XRT/NuSTAR data where the parameters were βp ∼ 2.2 or p2 ∼ 4. It has long been known that a power-law electron distribution can be produced from a region where particles are accelerated under Fermi process and the radiative losses in acceleration site decide the maximum attainable Lorentz factor, γmax. Consequently, this quantity decides the energy at which the spectrum curves steeply. We show that such a distribution provides a more natural explanation for the AstroSat data as well as the earlier XRT/NuSTAR observation, making this as the first well-constrained determination of the photon energy corresponding to γmax. This in turn provides an estimate of the acceleration time-scale as a function of magnetic field and Doppler factor. The UVIT observations are consistent with earlier optical/UV measurements and reconfirm that they plausibly correspond to a different radiative component than the one responsible for the X-ray emission.


2018 ◽  
Vol 615 ◽  
pp. A48
Author(s):  
Ping Zhang ◽  
Yang Guo ◽  
Lu Wang ◽  
Siming Liu

Context. Impulsive radio and hard X-ray emission from large solar flares are usually attributed to a hard distribution of high-energy electrons accelerated in the energy dissipation process of magnetic reconnection. Aims. We report the detection of impulsive radio and hard X-ray emissions produced by a population of energetic electrons with a very soft distribution in an M-class flare: SOL2015-08-27T05:45 . Methods. The absence of impulsive emission at 34 GHz and hard X-ray emission above 50 keV and the presence of distinct impulsive emission at 17 GHz and lower frequencies and in the 25–50 keV X-ray band imply a very soft distribution of energetic electrons producing the impulsive radio emission via the gyro-synchrotron process, and impulsive X-rays via bremsstrahlung. Results. The spectrum of the impulsive hard X-ray emission can be fitted equally well with a power-law model with an index of ∼6.5 or a super-hot thermal model with a temperature as high as 100 MK. Imaging observations in the extreme-UV and X-ray bands and extrapolation of the magnetic field structure using a nonlinear force-free model show that energetic electrons trapped in coronal loops are responsible for these impulsive emissions. Conclusions. Since the index of the power-law model is nearly constant during the impulsive phase, the power-law distribution or the super-hot component should be produced by a bulk energization process such as the Fermi and betatron acceleration of collapsing magnetic loops.


2018 ◽  
Vol 616 ◽  
pp. A57 ◽  
Author(s):  
G. E. Romero ◽  
A. L. Müller ◽  
M. Roth

Context. Starbursts are galaxies undergoing massive episodes of star formation. The combined effect of stellar winds from hot stars and supernova explosions creates a high-temperature cavity in the nuclear region of these objects. The very hot gas expands adiabatically and escapes from the galaxy creating a superwind which sweeps matter from the galactic disk. The superwind region in the halo is filled with a multi-phase gas with hot, warm, cool, and relativistic components. Aims. The shocks associated with the superwind of starbursts and the turbulent gas region of the bubble inflated by them might accelerate cosmic rays up to high energies. In this work we calculate the cosmic ray production associated with the superwind using parameters that correspond to the nearby southern starburst galaxy NGC 253, which has been suggested as a potential accelerator of ultra-high-energy cosmic rays. Methods. We evaluate the efficiency of both diffusive shock acceleration (DSA) and stochastic diffusive acceleration (SDA) in the superwind of NGC 253. We estimate the distribution of both hadrons and leptons and calculate the corresponding spectral energy distributions of photons. The electromagnetic radiation can help to discriminate between the different scenarios analyzed. Results. We find that the strong mass load of the superwind, recently determined through ALMA observations, strongly attenuates the efficiency of DSA in NGC 253, whereas SDA is constrained by the age of the starburst. Conclusions. We conclude that NGC 253 and similar starbursts can only accelerate iron nuclei beyond ~1018 eV under very special conditions. If the central region of the galaxy harbors a starved supermassive black hole of ~106 M⊙, as suggested by some recent observations, a contribution in the range 1018−1019 eV can be present for accretion rates ṁ ~ 10−3 in Eddington units. Shock energies of the order of 100 EeV might only be possible if very strong magnetic field amplification occurs close to the superwind.


1990 ◽  
Vol 142 ◽  
pp. 445-447
Author(s):  
R. R. Rausaria ◽  
Ranjana Bakaya ◽  
P.N. Khosa

Solar flare hard X-ray data obtained by Prognoz-9 spacecraft (Abrosimov et al 1988) in the energy range 10-200 keV are analysed. In examples of events which we consider here, high energy X-ray pulses appear earlier than low energy ones, which is contrary to many other events where the low energy X-ray peak emission takes place earlier. The variation of the spectral index was dynamical.


Sign in / Sign up

Export Citation Format

Share Document