scholarly journals SN1991bg-like supernovae are a compelling source of most Galactic antimatter

2016 ◽  
Vol 11 (S322) ◽  
pp. 176-179
Author(s):  
Fiona H. Panther ◽  
Roland M. Crocker ◽  
Ivo R. Seitenzahl ◽  
Ashley J. Ruiter

AbstractThe Milky Way Galaxy glows with the soft gamma ray emission resulting from the annihilation of ~5 × 1043 electron-positron pairs every second. The origin of this vast quantity of antimatter and the peculiar morphology of the 511keV gamma ray line resulting from this annihilation have been the subject of debate for almost half a century. Most obvious positron sources are associated with star forming regions and cannot explain the rate of positron annihilation in the Galactic bulge, which last saw star formation some 10 Gyr ago, or else violate stringent constraints on the positron injection energy. Radioactive decay of elements formed in core collapse supernovae (CCSNe) and normal Type Ia supernovae (SNe Ia) could supply positrons matching the injection energy constraints but the distribution of such potential sources does not replicate the required morphology. We show that a single class of peculiar thermonuclear supernova - SN1991bg-like supernovae (SNe 91bg) - can supply the number and distribution of positrons we see annihilating in the Galaxy through the decay of 44Ti synthesised in these events. Such 44Ti production simultaneously addresses the observed abundance of 44Ca, the 44Ti decay product, in solar system material.

2008 ◽  
Vol 4 (S257) ◽  
pp. 465-470
Author(s):  
Kurt Marti ◽  
Bernard Lavielle

AbstractGalactic cosmic rays (GCR) provide information on the solar neighborhood during the sun's motion in the galaxy. There is now considerable evidence for GCR acceleration by shock waves of supernova in active star-forming regions (OB associations) in the galactic spiral arms. During times of passage into star-forming regions increases in the GCR-flux are expected. Recent data from the Spitzer Space Telescope (SST) are shedding light on the structure of the Milky Way and of its star-forming-regions in spiral arms. Records of flux variations may be found in solar system detectors, and iron meteorites with GCR-exposure times of several hundred million years have long been considered to be potential detectors (Voshage, 1962). Variable concentration ratios of GCR-produced stable and radioactive nuclides, with varying half-lives and therefore integration times, were reported by Lavielleet al. (1999), indicating a recent 38% GCR-flux increase. Potential flux recorders consisting of different pairs of nuclides can measure average fluxes over different time scales (Lavielleet al., 2007; Mathew and Marti, 2008). Specific characteristics of two pairs of recorders (81Kr-Kr and129I-129Xe) are the properties of self-correction for GCR-shielding (flux variability within meteorites of varying sizes). The81Kr-Kr method (Marti, 1967) is based on Kr isotope ratios, while stable129Xe is the decay product of the radionuclide129I, which is produced by secondary neutron reactions on Te in troilites of iron meteorites. The two chronometers provide records of the average GCR flux over 1 and 100 million year time scales, respectively.


2020 ◽  
Vol 644 ◽  
pp. L1
Author(s):  
Megan Reiter

Recent work suggests that 26Al may determine the water budget in terrestrial exoplanets as its radioactive decay dehydrates planetesimals leading to rockier compositions. Here I consider the observed distribution of 26Al in the Galaxy and typical star-forming environments to estimate the likelihood of 26Al enrichment during planet formation. I do not assume Solar-System-specific constraints as I am interested in enrichment for exoplanets generally. Observations indicate that high-mass stars dominate the production of 26Al with nearly equal contributions from their winds and supernovae. Observed 26Al abundances are comparable to those in the early Solar System in the high-mass star-forming regions where most stars (and thereby most planets) form. These high abundances appear to be maintained for a few million years, which is much longer than the 0.7 Myr half-life. Observed bulk 26Al velocities are an order of magnitude slower than expected from winds and supernovae. These observations are at odds with typical model assumptions that 26Al is provided instantaneously by high velocity mass loss from supernovae and winds. The regular replenishment of 26Al, especially when coupled with the small age differences that are common in high-mass star-forming complexes, may significantly increase the number of star- and planet-forming systems exposed to 26Al. Exposure does not imply enrichment, but the order of magnitude slower velocity of 26Al may alter the fraction that is incorporated into planet-forming material. Together, this suggests that the conditions for rocky planet formation are not rare, nor are they ubiquitous, as small regions such as Taurus, that lack high-mass stars to produce 26Al may be less likely to form rocky planets. I conclude with suggested directions for future studies.


1999 ◽  
Vol 16 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Fabian Walter

AbstractHigh resolution HI observations of nearby dwarf galaxies (most of which are situated in the M81 group at a distance of about 3·2 Mpc) reveal that their neutral interstellar medium (ISM) is dominated by hole-like features most of which are expanding. A comparison of the physical properties of these holes with the ones found in more massive spiral galaxies (such as M31 and M33) shows that they tend to reach much larger sizes in dwarf galaxies. This can be understood in terms of the galaxy's gravitational potential. The origin of these features is still a matter of debate. In general, young star forming regions (OB-associations) are held responsible for their formation. This picture, however, is not without its critics and other mechanisms such as the infall of high velocity clouds, turbulent motions or even gamma ray bursters have been recently proposed. Here I will present one example of a supergiant shell in IC 2574 which corroborates the picture that OB associations are indeed creating these structures. This particular supergiant shell is currently the most promising case to study the effects of the combined effects of stellar winds and supernova explosions which shape the neutral interstellar medium of (dwarf) galaxies.


Author(s):  
Neil Gehrels

Since its launch on 20 November 2004, the Swift mission has been detecting approximately 100 gamma-ray bursts (GRBs) each year, and immediately (within approx. 90 s) starting simultaneous X-ray and UV/optical observations of the afterglow. It has already collected an impressive database, including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows and a rapid follow-up by other observatories notified through the GCN. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations and the conclusion that short GRBs can occur in non-star-forming galaxies or regions, whereas long GRBs are strongly concentrated within the star-forming regions. This is consistent with the NS merger model. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at z ∼5–6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to a much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and the association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova.


1991 ◽  
Vol 148 ◽  
pp. 57-62
Author(s):  
Paul Hodge

The dust content of the Magellanic Clouds can be studied using optical, ultraviolet, infrared and, indirectly, radio wavelength data. All recent studies show that the dust content is lower than that of the Milky Way Galaxy for both Clouds and that the optical properties of the dust are different. At ultraviolet wavelengths, the 2165 Å “bump” in the extinction curve is significantly smaller than in the Galaxy (this now appears NOT to be a consequence of the lower heavy element abundances) and the far ultraviolet (shortward of ˜2000 Å) extinction is greater than in the Galaxy (this IS likely to be a consequence of the lower heavy element abundances). New optical data on background galaxies suggest that the total extinction in the central parts of both the LMC and the SMC is approximately 1.5 magnitudes. High local extinction values are derived from uv and optical observations of star-forming regions, where a spatial correlation with CO detections is sometimes, but not always, found.


2008 ◽  
Vol 17 (10) ◽  
pp. 1889-1894 ◽  
Author(s):  
A. T. ARAUDO ◽  
G. E. ROMERO ◽  
V. BOSCH-RAMON ◽  
J. M. PAREDES

Recent radio observations support a picture for star formation where there is accretion of matter onto a central protostar with the ejection of molecular outflows that can affect the surrounding medium. The impact of a supersonic outflow on the ambient gas can produce a strong shock that could accelerate particles up to relativistic energies. Strong evidence for this has been the detection of nonthermal radio emission coming from the jet termination region of some young massive stars. In the present contribution, we study the possible high-energy emission due to the interaction of relativistic particles, electrons and protons, with the magnetic, photon and matter fields inside a giant molecular cloud. Electrons lose energy via relativistic Bremsstrahlung, synchrotron radiation and inverse Compton interactions, and protons cool mainly through inelastic collisions with atoms in the cloud. We conclude that some massive young stellar objects (YSOs) might be detectable at gamma-rays by next generation instruments, both satellite-borne and ground based.


2018 ◽  
Vol 620 ◽  
pp. A119 ◽  
Author(s):  
A. de Ugarte Postigo ◽  
C. C. Thöne ◽  
J. Bolmer ◽  
S. Schulze ◽  
S. Martín ◽  
...  

Context. Long gamma-ray bursts (GRBs) are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. Over a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions. Aims. We aim to use the afterglow of GRB 161023A at a redshift z = 2.710 as a background source to study the environment of the explosion and the intervening systems along its line of sight. Methods. For the first time, we complement ultraviolet (UV), optical and near-infrared (NIR) spectroscopy with millimetre spectroscopy using the Atacama Large Millimeter Array (ALMA), which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C, and O. We present photometry ranging from 43 s to over 500 days after the burst. Results. We infer a host-galaxy metallicity of [Zn/H] = −1.11 ± 0.07, which, corrected for dust depletion, results in [X/H] = −0.94 ± 0.08. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of log(NCO/cm−2) < 15.7 and log(NHCO+/cm−-12, which are consistent with those that we obtain from the optical spectra, log(NH2/cm−2)< 15.2 and log(NCO/cm−2) < 14.5. Within the host galaxy, we detect three velocity systems through UV, optical and NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0 kpc. The sight line to GRB 161023A shows nine independent intervening systems, most of them with multiple components. Conclusions. Although no molecular absorption was detected for GRB 161023A, we show that GRB millimetre spectroscopy is now feasible and is opening a new window on the study of molecular gas within star-forming galaxies at all redshifts. The most favoured lines of sight for this purpose will be those with high metallicity and dust.


2020 ◽  
Vol 494 (2) ◽  
pp. 2886-2904 ◽  
Author(s):  
Tetsuya Hashimoto ◽  
Tomotsugu Goto ◽  
Ting-Wen Wang ◽  
Seong Jin Kim ◽  
Simon C-C Ho ◽  
...  

ABSTRACT Fast radio bursts (FRBs) are mysterious radio bursts with a time-scale of approximately milliseconds. Two populations of FRB, namely repeating and non-repeating FRBs, are observationally identified. However, the differences between these two and their origins are still cloaked in mystery. Here we show the time-integrated luminosity–duration (Lν–wint, rest) relations and luminosity functions (LFs) of repeating and non-repeating FRBs in the FRB Catalogue project. These two populations are obviously separated in the Lν-wint, rest plane with distinct LFs, i.e. repeating FRBs have relatively fainter Lν and longer wint, rest with a much lower LF. In contrast with non-repeating FRBs, repeating FRBs do not show any clear correlation between Lν and wint, rest. These results suggest essentially different physical origins of the two. The faint ends of the LFs of repeating and non-repeating FRBs are higher than volumetric occurrence rates of neutron star (NS) mergers and accretion-induced collapse (AIC) of white dwarfs (WDs), and are consistent with those of soft gamma-ray repeaters (SGRs), Type Ia supernovae (SNe Ia), magnetars, and WD mergers. This indicates two possibilities: either (i) faint non-repeating FRBs originate in NS mergers or AIC and are actually repeating during the lifetime of the progenitor, or (ii) faint non-repeating FRBs originate in any of SGRs, SNe Ia, magnetars, and WD mergers. The bright ends of LFs of repeating and non-repeating FRBs are lower than any candidates of progenitors, suggesting that bright FRBs are produced from a very small fraction of the progenitors regardless of the repetition. Otherwise, they might originate in unknown progenitors.


2012 ◽  
Vol 8 (S289) ◽  
pp. 188-193 ◽  
Author(s):  
Mark J. Reid

AbstractRecently, astrometric accuracy approaching ~ 10 μas has become routinely possible with Very Long Baseline Interferometry. Since, unlike at optical wavelengths, interstellar dust is transparent at radio wavelengths, parallaxes and proper motions can now be measured for massive young stars (with maser emission) across the Galaxy, enabling direct measurements of the spiral structure of the Milky Way. Fitting the full 3D position and velocity vectors to a simple model of the Galaxy yields extremely accurate values for its fundamental parameters, including the distance to the Galactic Center, R0=8.38 ± 0.18 kpc, and circular rotation at the Solar Circle, Θ0 = 243 ± 7 km s−1. The rotation curve of the Milky Way, based for the first time on ‘gold standard’ distances and complete 3D information, appears to be very flat.


Sign in / Sign up

Export Citation Format

Share Document