Use of selenium enriched fertilizers in the management of a suckling herd: effects over a 5 year period

2009 ◽  
Vol 2009 ◽  
pp. 89-89
Author(s):  
V Robaye ◽  
O Dotreppe ◽  
J L Hornick ◽  
S Paeffgen ◽  
L Istasse ◽  
...  

Antioxidant mechanisms, immune responses, reproduction, thyroid metabolism are processes in which the trace element selenium (Se) is involved. In beef production with suckling herds, a Se deficiency could impair animal health resulting in reduced incomes. In Belgium the Se content in locally produced feedstuffs is low and thus, in beef farms where locally produced feedstuffs are fed for the entire year, symptoms of Se deficiency are observed. The aim of the present study was to assess the effect, of Se enriched fertilizers on the Se content of feedstuffs and on the Se status of cattle.

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1527
Author(s):  
Xin Huang ◽  
Yu-Lan Dong ◽  
Tong Li ◽  
Wei Xiong ◽  
Xu Zhang ◽  
...  

Selenium (Se) is an essential element for the maintenance of a healthy physiological state. However, due to environmental and dietary factors and the narrow safety range of Se, diseases caused by Se deficiency or excess have gained considerable traction in recent years. In particular, links have been identified between low Se status, cognitive decline, immune disorders, and increased mortality, whereas excess Se increases metabolic risk. Considerable evidence has suggested microRNAs (miRNAs) regulate interactions between the environment (including the diet) and genes, and play important roles in several diseases, including cancer. MiRNAs target messenger RNAs to induce changes in proteins including selenoprotein expression, ultimately generating disease. While a plethora of data exists on the epigenetic regulation of other dietary factors, nutrient Se epigenetics and especially miRNA regulated mechanisms remain unclear. Thus, this review mainly focuses on Se metabolism, pathogenic mechanisms, and miRNAs as key regulatory factors in Se-related diseases. Finally, we attempt to clarify the regulatory mechanisms underpinning Se, miRNAs, selenoproteins, and Se-related diseases.


PEDIATRICS ◽  
1991 ◽  
Vol 87 (3) ◽  
pp. 339-351
Author(s):  
Richard E. Litov ◽  
Gerald F. Combs

Se is an essential nutrient that provides antioxidant protection in concert with vitamin E. Several selenoproteins have been identified, but only one, SeGSHpx, has a known function, that of neutralizing toxic hydroperoxides. Plasma Se concentration, being responsive to changes in Se intake, is the most practical and widely used measure of nutritional Se status. The plasma Se concentrations of the majority of healthy infants and children fall within the range of 50 to 150 µg/L. Although SeGSHpx activity measures the metabolically functional form of Se, the lack of a standardized analytical method has limited its usefulness as an index of nutritional Se status. Se deficiency was first observed in animals, but it is now recognized to occur in humans. Two human diseases associated with severe nutritional Se deficiency have been reported from China: a juvenile cardiomyopathy named Keshan disease and a chondrodystrophy named Kaschin-Beck disease. Long-term TPN, which provides negligible amounts of intrinsic Se, has been demonstrated in some cases to result in biochemical and clinical impairment. Although there are no consistent signs and symptoms characteristic of TPN-associated Se deficiency, in addition to the low blood selenium levels, some patients will experience leg muscle pain and altered serum transaminase and creatine kinase activities. These manifestations of Se deficiency usually take years to develop. Recent information about the amount of dietary Se needed to maximize plasma SeGSHpx activity in adult men has allowed for better estimates of the Se requirement for humans. Recommended daily dietary allowances published recently by the National Academy of Sciences have been revised for infants and children in this paper by making appropriate adjustments for the protein requirements of these age-groups. These recommended intakes for Se can generally be met by consuming adequate amounts of cereals, meat, eggs, dairy products, human milk, and infant formula, which are good sources of highly available Se and are of low risk of providing excess amounts of Se. Suboptimal Se intakes by pregnant women may predispose their infants to low Se status at birth, which in turn may affect the infants' ability to maintain adequate Se status during the first few months of life. In those situations where protein intake is restricted, such as in phenylketonuria and maple syrup urine disease, Se-supplemented formulas should be used. The most critical situation for Se supplementation is in pediatric patients receiving long-term TPN therapy. When supplementing with Se, consideration must be given to the amount and form of Se to be used; with long-term TPN therapy, plasma Se levels should be monitored.


2015 ◽  
Vol 11 (02) ◽  
pp. 97 ◽  
Author(s):  
Leonidas H Duntas ◽  
Alicja Hubalewska-Dydejczyk ◽  
◽  

The essential trace element selenium (Se) is constitutively incorporated as selenocysteine, in proteins, among others in antioxidative selenoproteins, such as glutathione peroxidase(s) and thioredoxin reductase. Since chronic inflammation is thought to deplete Se stores in the body, Se supplementation should be considered in prolonged inflammatory states, Se being the trace element the most affected in chronic or low-grade inflammation. Se administration might also be beneficial in bacterial and viral diseases as well as metabolic and autoimmune diseases. In order to maintain a Se steady state, or “selenostasis,” Se supplementation, via either diet or compounds, is required to preserve the activity of selenoproteins in antioxidative and redox processes. Importantly, Se could play a pivotal role in the maintenance of homeostasis in infected tissues by inhibiting the proinflammatory toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway and counteracting proinflammatory cytokine action. Finally, while Se status shows considerable promise as a valid marker of inflammatory and autoimmune disease, new functional Se nanoparticles and highly bioavailable selenomethionine compounds will in all probability provide a more efficacious and reliable intervention tool in both preventive and therapeutic disease management.


2021 ◽  
Author(s):  
Theophilus Clavell Davies

Abstract The term diseases of unknown aetiology (DUA) or idiopathic diseases refers to diseases that are of uncertain or unknown cause or origin. Among plausible geoenvironmental (co-)factors in causation of DUA, this article focusses on the entry of trace elements, including metals and metalloids into biological systems, and their involvement in humoral and cellular immune responses, representing potentially toxic agents with implications as co-factors for certain DUA. Several trace elements/metals/metalloids (micronutrients) play vital roles as cofactors for essential enzymes and antioxidant molecules, thus, conferring protection against disease. However, inborn errors of trace element/metal/metalloid metabolisms can occur to produce toxicity, such as when there are basic defects in the element transport mechanism. Ultimately, it is the amount of trace element, metal or metalloid that is taken up, its mode of accumulation in human tissues, and related geomedical attributes such as the chemical form and bioavailability that decisively determine whether the exerted effects are toxic or beneficial. Several case descriptions of DUA that are common worldwide are given to illustrate our knowledge so far of how trace element/metal/metalloid interactions in the immune system may engender its dysregulation and be implicated as causal co-factors of DUA.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 177-178
Author(s):  
Rachel M Taylor ◽  
Roger A Sunde

Abstract Selenium (Se) is an essential and toxic trace mineral in animal diets. The current NRC turkey Se requirement is 0.2 µg Se/g diet for all life stages, higher than the published rat and mouse requirements. The studies that form the basis for the turkey requirement were performed over 50 years ago and based on prevention of Se-deficiency disease. With the genetic improvement of commercial turkey flocks and emerging new Se status biomarkers, we fed day-old male poults a Se-deficient (0.005 µg/g), vitamin E-adequate torula-based diet supplemented with graded levels of Se, from 0 to 5 µg/g, for 28 days. Poults supplemented with <0.05 µg/g had reduced growth, but there was no effect of high Se on growth. Se biomarkers responded hyperbolically to increasing dietary Se and reached plateaus at or before 0.4 µg/g. In deficiency, liver and kidney Se fell to <10% of Se-adequate levels. Activities of plasma GPX3; liver, kidney, pancreas and muscle GPX1; and liver, kidney, muscle and gizzard GPX4 all decreased to <10% in Se deficiency and reached plateau levels by 0.4 µg/g. In the same tissues, ≤6 out of 24 selenoprotein transcripts were downregulated to 2X Se-adequate levels in poults fed up to 5 µg/g diet. Liver Se increased to 5.6X Se-adequate levels with 5 µg/g diet. We conclude that the dietary Se level to maximize Se status biomarkers in growing turkey poults is 0.4 µg Se/g diet, double the current NRC requirement. Transcript expression is maximized at lower dietary Se levels than enzyme activities of the corresponding selenoproteins. Lastly, based on growth data, the turkey appears resistant to excess dietary Se, suggesting FDA Se supplementation limits can be safely raised. (Funded by USDA Hatch 1013496)


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shaneice Nettleford ◽  
Luming Zhao ◽  
James Fraser ◽  
Adwitia Dey ◽  
Dhimant Desai ◽  
...  

Abstract Objectives Enteropathogenic Escherichia coli (EPEC) poses a great threat to developing countries, as EPEC can result in diarrhea and colitis in children. Interestingly, the effect of trace element nutritional deficiencies as well as their supplementation on disease pathogenesis is increasingly being recognized. We have previously reported that supplementation of mice with selenium (Se), a trace element that is incorporated into selenoproteins as the 21st amino acid, resulted in the amelioration of chemically induced colitis through the downregulation of pro-inflammatory mediators of the arachidonic acid pathway, including prostaglandin E2 (PGE2). Here we examined the effects of Se supplementation on immune responses during an enteric infection with Citrobacter rodentium, a natural murine enteropathogen. Methods C57BL/6 mice placed on Se-deficient (0.01 ppm Se), Se-adequate (0.08 ppm Se), or Se-supplemented (0.4 ppm Se) diets for 8 weeks were infected with Citrobacter rodentium, the murine equivalent of EPEC with a shared core set of virulence factors. Mice were euthanized, and colons were collected for further analysis including western blots and flow cytometry. Results Se-deficient mice experienced increased bacterial burden, mortality, and decreased colon length following infection, compared to Se-adequate and Se-supplemented mice. Studies revealed that there was an increase type 3 innate-lymphoid cells (ILC3s) and IL-22 producing T helper 17 (Th17) cells, but a decrease in regulatory T- cells (Tregs) and 15-prostaglandin dehydrogenase (15-PGDH), the enzyme that preferentially oxidizes PGE2, in the colon of Se-deficient mice compared to Se-adequate and Se-supplemented mice. Treatment of Se-adequate mice with CAY10397, an inhibitor of 15-PGDH, increased the bacterial burden following infection. Infection of mice that lack expression of selenoproteins in macrophages (Trspfl/fl LysMCre) showed increased mortality despite being fed diets replete with Se. Conclusions Adequate to supplemental levels of dietary Se is required to maximize the expression of selenoproteins to effectively mediate resolution of enteric infections. Selenoproteins act through diverse mechanisms, including modulation of immune responses and inflammation through the oxidative metabolism of PGE2. Funding Sources National Institute of Health.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 204 ◽  
Author(s):  
Anabel Saran ◽  
Valeria Imperato ◽  
Lucia Fernandez ◽  
Panos Gkorezis ◽  
Jan d’Haen ◽  
...  

Lead (Pb) and cadmium (Cd) are major environmental pollutants, and the accumulation of these elements in soils and plants is of great concern in agricultural production due to their toxic effects on crop growth. Also, these elements can enter into the food chain and severely affect human and animal health. Bioaugmentation with plant growth-promoting bacteria (PGPB) can contribute to an environmentally friendly and effective remediation approach by improving plant survival and promoting element phytostabilization or extraction under such harsh conditions. We isolated and characterised Pb and Cd-tolerant root-associated bacteria from Helianthus petiolaris growing on a Pb/Cd polluted soil in order to compose inoculants that can promote plant growth and also ameliorate the phytostabilization or phytoextraction efficiency. One hundred and five trace element-tolerant rhizospheric and endophytic bacterial strains belonging to eight different genera were isolated from the aromatic plant species Helianthus petiolaris. Most of the strains showed multiple PGP-capabilities, ability to immobilise trace elements on their cell wall, and promotion of seed germination. Bacillus paramycoides ST9, Bacillus wiedmannii ST29, Bacillus proteolyticus ST89, Brevibacterium frigoritolerans ST30, Cellulosimicrobium cellulans ST54 and Methylobacterium sp. ST85 were selected to perform bioaugmentation assays in greenhouse microcosms. After 2 months, seedlings of sunflower (H. annuus) grown on polluted soil and inoculated with B. proteolyticus ST89 produced 40% more biomass compared to the non-inoculated control plants and accumulated 20 % less Pb and 40% less Cd in the aboveground plant parts. In contrast, B. paramycoides ST9 increased the bioaccumulation factor (BAF) of Pb three times and of Cd six times without inhibiting plant growth. Our results indicate that, depending on the strain, bioaugmentation with specific beneficial bacteria can improve plant growth and either reduce trace element mobility or enhance plant trace element uptake.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1565
Author(s):  
Adamu Belay ◽  
Edward J. M. Joy ◽  
Christopher Chagumaira ◽  
Dilnesaw Zerfu ◽  
E. Louise Ander ◽  
...  

Selenium (Se) is an essential element for human health and livestock productivity. Globally, human Se status is highly variable, mainly due to the influence of soil types on the Se content of crops, suggesting the need to identify areas of deficiency to design targeted interventions. In sub-Saharan Africa, including Ethiopia, data on population Se status are largely unavailable, although previous studies indicated the potential for widespread Se deficiency. Serum Se concentration of a nationally representative sample of the Ethiopian population was determined, and these observed values were combined with a spatial statistical model to predict and map the Se status of populations across the country. The study used archived serum samples (n = 3269) from the 2015 Ethiopian National Micronutrient Survey (ENMS). The ENMS was a cross-sectional survey of young and school-age children, women and men. Serum Se concentration was measured using inductively coupled plasma mass spectrometry (ICPMS). The national median (Q1, Q3) serum Se concentration was 87.7 (56.7, 123.0) μg L−1. Serum Se concentration differed between regions, ranging from a median (Q1, Q3) of 54.6 (43.1, 66.3) µg L−1 in the Benishangul-Gumuz Region to 122.0 (105, 141) µg L−1 in the Southern Nations, Nationalities, and Peoples’ Region and the Afar Region. Overall, 35.5% of the population were Se deficient, defined as serum Se < 70 µg L−1. A geostatistical analysis showed that there was marked spatial dependence in Se status, with serum concentrations greatest among those living in North-East and Eastern Ethiopia and along the Rift Valley, while serum Se concentrations were lower among those living in North-West and Western Ethiopia. Selenium deficiency in Ethiopia is widespread, but the risk of Se deficiency is highly spatially dependent. Policies to enhance Se nutrition should target populations in North-West and Western Ethiopia.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1070
Author(s):  
Rahim Rostami ◽  
Sarmad Nourooz-Zadeh ◽  
Afshin Mohammadi ◽  
Hamid Reza Khalkhali ◽  
Gordon Ferns ◽  
...  

Selenium (Se) deficiency has been implicated in the pathogenesis of Hashimoto’s thyroiditis (HT), although the available evidence is limited. The present study aimed to explore the interrelationships between serum Se status with measures of thyroid function and antioxidant defense in new cases of HT patients with hypoechogenic thyroid. HT patients (n = 49) and matched controls (n = 50) were recruited. Selenium, thyroid hormone panel, thyroid volume (TVol), glutathione (GSH), glutathione peroxidase3 (GPx3) activity, urinary iodine concentration (UIC), and urinary creatinine (Cr) were assessed. HT patients exhibited lower Se levels compared to controls (p < 0.001) with the rates of Se-deficient (<0.85 µmol/L) participants being 58.8% and 34%, respectively. Se-deficient patients exhibited higher thyroid stimulating hormone (TSH), Thyroid volume (TVol), thyroglobulin, antibody-titers, GPx3 activity and UIC/Cr compared to Se-sufficient patients (all p < 0.001). In the Se-deficient patients, inverse correlations were seen between Se-levels with TSH, TVol, and Thyroid peroxidase antibody (TPO-Ab) (all p < 0.001). This study is the first to uncover that coexisting Se-deficiency and elevated iodine in HT may enhance autoimmune reactions and accelerate the deterioration of thyroid function through oxidative stress. Our study also highlights the importance of optimal Se status in this disease, thus providing a rationale for the execution of intervention trials for the evaluation of the clinical benefits of antioxidant-status improvement in HT.


Sign in / Sign up

Export Citation Format

Share Document