A G-band cryogenic MMIC heterodyne receiver module for astronomical applications

2012 ◽  
Vol 4 (3) ◽  
pp. 283-289 ◽  
Author(s):  
Patricia Voll ◽  
Lorene Samoska ◽  
Sarah Church ◽  
Judy M. Lau ◽  
Matthew Sieth ◽  
...  

We report cryogenic noise temperature and gain measurements of a prototype heterodyne receiver module designed to operate in the atmospheric window centered on 150 GHz. The module utilizes monolithic microwave integrated circuit (MMIC) InP high electron mobility transistor (HEMT) amplifiers, a second harmonic mixer, and bandpass filters. Swept local oscillator (LO) measurements show an average gain of 22 dB and an average noise temperature of 87 K over a 40 GHz band from 140 to 180 GHz when the module is cooled to 22 K. A spot noise temperature of 58 K was measured at 166 GHz and is a record for cryogenic noise from HEMT amplifiers at this frequency. Intermediate frequency (IF) sweep measurements show a 20 GHz IF band with less than 94 K receiver noise temperature for a fixed LO of 83 GHz. The compact housing features a split-block design that facilitates quick assembly and a condensed arrangement of the MMIC components and bias circuitry. DC feedthroughs and nano-miniature connectors also contribute to the compact design, so that the dimensions of the moduleare approximately 2.5 cm per side.

2017 ◽  
Vol 14 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Jebreel M. Salem ◽  
Dong Sam Ha

It is necessary for the oil and gas industry to drill deeper due to decrease of easily accessible natural reserves. Temperatures of deep wells can exceed 210°C, and conventional cooling and heat extraction techniques are impractical in such a harsh environment. Reliable electronic designs that can sustain high temperature become necessary. This article presents a high-temperature passive radio frequency (RF) mixer for downhole communications. The proposed mixer is designed to upconvert or downconvert the incoming signal with low conversion loss (CL), high linearity, and reliable operation at the ambient temperature up to 250°C. GaN is a wide-bandgap technology that can provide a reliable operation at high ambient temperatures, and the proposed mixer adopts a commercial GaN high-electron-mobility transistor. Measurement results indicate that the proposed mixer achieves a CL of 7.1 dB at local oscillator (LO) power of 2.5 dBm for the downconversion from 230–253 to 97.5 MHz at 250°C and the input P1dB compression point lies at 5 dBm. The designed mixer also achieves 24.5 dB RF-to-intermediate frequency (IF) isolation and 28 dB LO-to-IF isolation at 250°C. The power dissipation of the mixer is virtually zero.


2009 ◽  
Vol 1 (4) ◽  
pp. 339-345 ◽  
Author(s):  
Vincenzo Alleva ◽  
Andrea Bettidi ◽  
Walter Ciccognani ◽  
Marco De Dominicis ◽  
Mauro Ferrari ◽  
...  

This work presents the design, fabrication, and test of X-band and 2–18 GHz wideband high-power single pole double throw (SPDT) monolithic microwave integrated circuit (MMIC) switches in microstrip gallium nitride (GaN) technology. Such switches have demonstrated state-of-the-art performances and RF fabrication yields better than 65%. In particular, the X-band switch exhibits 1 dB insertion loss, better than 37 dB isolation, and a power handling capability better than 39 dBm at a 1 dB insertion loss compression point; the wideband switch shows an insertion loss lower than 2.2 dB, better than 25 dB isolation, and an insertion loss compression of 1 dB at an input drive higher than 38.5 dBm in the entire bandwidth.


2020 ◽  
Vol 11 ◽  
pp. 1484-1491
Author(s):  
Boris I Ivanov ◽  
Dmitri I Volkhin ◽  
Ilya L Novikov ◽  
Dmitri K Pitsun ◽  
Dmitri O Moskalev ◽  
...  

A broadband low-noise four-stage high-electron-mobility transistor amplifier was designed and characterized in a cryogen-free dilution refrigerator at the 3.8 K temperature stage. The obtained power dissipation of the amplifier is below 20 mW. In the frequency range from 6 to 12 GHz its gain exceeds 30 dB. The equivalent noise temperature of the amplifier is below 6 K for the presented frequency range. The amplifier is applicable for any type of cryogenic microwave measurements. As an example we demonstrate here the characterization of the superconducting X-mon qubit coupled to an on-chip coplanar waveguide resonator.


2011 ◽  
Vol 3 (4) ◽  
pp. 399-404
Author(s):  
Ali M. Darwish ◽  
H. Alfred Hung ◽  
Edward Viveiros ◽  
Amr A. Ibrahim

A broadband Monolithic Microwave Integrated Circuit (MMIC) amplifier, with 12 ± 2 dB gain across the 0.1–27 GHz band has been demonstrated using the AlGaN/GaN on SiC technology. The amplifier design employs a non-conventional, series-DC/RF-High Electron Mobility Transistor (HEMT) configuration. This configuration provides an alternative design to the conventional traveling-wave amplifier (TWA). It results in a smaller MMIC chip size, and extends amplifier gain to the low-frequency region. The amplifier MMIC utilizes four HEMT devices in series and could be biased at voltages up to 120 V.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Kudabay ◽  
◽  
A. Salikh ◽  
V.A. Moseichuk ◽  
A. Krivtsun ◽  
...  

The purpose of this paper is to design a microwave monolithic integrated circuit (MMIC) for low noise amplifier (LNA) X-band (7-12 GHz) based on technology of gallium nitride (GaN) high electron mobility transistor (HEMT) with a T-gate, which has 100 nm width, on a silicon (Si) semi-insulating substrate of the OMMIC company. The amplifier is based on common-source transistors with series feedback, which was formed by high-impedance transmission line, and with parallel feedback to match noise figure and power gain. The key characteristics of an LNA are noise figure and gain. However, in this paper, it was decided to design the LNA, which should have a good margin in terms of input and output power. As a result, GaN technology was chosen, which has a higher noise figure compared to other technologies, but eliminates the need for an input power limiter, which in turn significantly increases the overall noise figure. As a result LNA MMIC was developed with the following characteristics: noise figure less than 1.6 dB, small-signal gain more than 20 dB, return loss better than -13 dB and output power more than 19 dBm with 1 dB compression in the range from 7 to 12 GHz in dimensions 2x1.5 mm², which has a supply voltage of 8 V and a current consumption of less than 70 mA. However, it should be said that LNA was only modeled in the AWR DE.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1588
Author(s):  
Sungjae Oh ◽  
Eunjoo Yoo ◽  
Hansik Oh ◽  
Hyungmo Koo ◽  
Jaekyung Shin ◽  
...  

In this paper, a frequency selective degeneration technique using a parallel network with a resistor and capacitor is proposed for a 6–18 GHz GaAs pseudomorphic high electron mobility transistor (pHEMT) broadband power amplifier integrated circuit (PAIC). The proposed degeneration network is applied to the source of the transistor to flatten the frequency response of the transistor in conjunction with feedback and resistor biasing circuits. An almost uniform frequency response was achieved at the wide frequency band through optimizing the values of the capacitor and resistor for the degeneration circuit. Single-section matching networks for small chip sizes were adopted for the two-stage amplifier following the flat frequency characteristics of the degenerated transistor. The proposed broadband PAIC for the 6 to 18 GHz band was fabricated using a 0.15 μm GaAs pHEMT process and had a chip size of 1.03 × 0.87 mm2. The PAIC exhibited gain of 15 dB to 17.2 dB, output power of 20.5 dBm to 22.1 dBm, and linear output power of 11.9 dBm to 13.45 dBm, which satisfies the IMD3 of −30 dBc in the 6–18 GHz band. Flatness for the gain and output power was achieved as ±1.1 dB and ±0.8 dB, respectively.


Author(s):  
R. Gawande ◽  
R. Reeves ◽  
K. Cleary ◽  
A. C. Readhead ◽  
T. Gaier ◽  
...  

2012 ◽  
Vol 4 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Ulrich Johannes Lewark ◽  
Axel Tessmann ◽  
Hermann Massler ◽  
Sandrine Wagner ◽  
Arnulf Leuther ◽  
...  

Two frequency-tripler monolithic microwave integrated circuits (MMICs) reaching sub-millimeter-wave output frequencies of 315 GHz are presented. The convenient integration of transistor–based field effect transistor (FET) frequency multipliers into multifunctional MMICs is shown by integration of a single–stage frequency-tripler with a buffer amplifier generating −0.5 dBm of peak output power at 288. Without post-amplification an average output power of −10.1 dBm in the output frequency range from 285 to 315 is measured with 10 dBm of input power. The 3-dB bandwidth is more than 30 GHz and could not be determined exactly due to the measurement setup. Both MMICs are realized in a 50 nm metamorphic high electron mobility transistor (HEMT) transistor technology. A multiple power-meter measurement technique including a waveguide filter is used to measure accurately the second harmonic power content within the output spectrum.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Alessandro Navarrini ◽  
Alessandro Scalambra ◽  
Simone Rusticelli ◽  
Andrea Maccaferri ◽  
Alessandro Cattani ◽  
...  

This paper describes the design, fabrication, and test results of a room temperature multi-channel heterodyne receiver operating across the 2.3–8.2 GHz radio frequency (RF) band. Such a “Warm Section” (WS) receiver is part of phased arrays for reflector observing systems 2 (PHAROS2), a C-band phased array feed (PAF) demonstrator with digital beamformer for radio astronomy application. The WS receiver is cascaded to the PHAROS2 cryostat, which includes an array of Vivaldi antennas with low noise pre-amplification stages. The WS can handle up to 32 RF signals and, for each of them, realizes the operations of filtering, RF amplification and down-conversion from the RF to the 375–650 MHz intermediate frequency (IF). Also, the WS incorporates an IF-to-optical signal conversion through analogue wavelength division multiplexing IF over fiber (IFoF) and fiber-optic transmitters (OTXs). The 32-channel WS receiver consists of four eight-channel WS RF/IF modules, one local oscillator (LO) splitter module and one monitoring and control module, all hosted in a standard 6U × 19-inch rack.


Sign in / Sign up

Export Citation Format

Share Document