Miniaturized triple-band monopole antenna loaded with a via-less MTM for 3G, WIMAX, and WLAN applications

Author(s):  
Mohammadsadegh Kasmaei ◽  
Ehsan Zareian-Jahromi ◽  
Raheleh Basiri ◽  
Valiollah Mashayekhi

Abstract In this paper, a tri-band metamaterial (MTM) loaded compact monopole antenna is proposed. In the first step of design procedure, a rectangular monopole antenna is improved by replacing the corresponding rectangular patch with a ring resonator. As a result, the first obtained operating frequency is decreased from 2.95 to 2.46 GHz. Then, this operating frequency is reduced to 2.02 GHz utilizing an MTM geometry in the antenna structure. The geometry parameters of the proposed antenna are optimized to provide the applicability for 3G, WLAN, and WiMAX applications. The impedance bandwidths of 600, 1080, and 220 MHz are obtained at 2.02–2.62, 3.48–4.56, and 5.12–5.34 GHz, respectively. Moreover, the equivalent circuit of the proposed antenna has been extracted. The proposed equivalent circuit model is validated through a comparison with corresponding simulation results. The proposed antenna is compact, low profile, via-less, and provides easy fabrication. Considering the first resonance frequency, a compactness of 32% is achieved in comparison to the corresponding unloaded monopole antenna.

2004 ◽  
Vol 27 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Haiwen Liu ◽  
Xiaowei Sun ◽  
Zhengfan Li

A new and simple parameter-extraction method for the equivalent circuit of defected ground structure (DGS) is presented. Using this method, circuit simulation, based on the DGS equivalent-circuit model, show excellent agreements with the electromagnetic (EM) simulation. Further, our method is applied effectively to design a low-pass filter (LPF) with DGS. Comparison between simulation and measurement confirm the validity of the LPF configuration and design procedure. Simple structure and high power handling capability are obtained from the proposed LPF.


In this paper, the design, simulation and fabrication of a filtering antenna is proposed. The filtering antenna structure is, therefore, framed by integrating elements, such as the feed line, parallel coupled resonators and the microstrip patch antenna array. The combined elements are designed for third order Chebyshev band pass filter with a pass band ripple of 0.1 dB and the integrated structure is more suitable for different S-band (2 GHz – 4 GHz) wireless applications. The equivalent circuit model for the proposed filtering antenna structure is analysed and the design procedure of the filter is also presented in detail. The 1x2 rectangular patch antenna array acts both as a radiating element and also as the last resonator of the band pass filter. The proposed filtering antenna structure results in high out-of-band rejection, enhanced bandwidth and a gain of about 209 MHz and 1.53 dB. The fabricated result agrees well with the simulation characteristics


2021 ◽  
Vol 35 (11) ◽  
pp. 1378-1379
Author(s):  
Brinta Chowdhury ◽  
Thisara Walpita ◽  
B. Yang ◽  
A. Eroglu

The resonant characteristics of single split ring resonator-based metamaterial devices with single gap are presented using the analytical formulation developed for the lumped element equivalent circuit model. The characteristics of the metamaterial resonators have been investigated for different ring sizes, gap widths and substrate permittivity. Equivalent circuit model is developed for two ring structures. The analytical, and simulation results are compared and verified. The prototype has been then built and measured. It has been observed that all the results agree. The results presented in this paper can be used to develop devices at the THz range that can operate as sensors, antennas or tuning elements.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 514
Author(s):  
AK. Gangwar ◽  
MS. Alam

In this paper, a miniaturize folded monopole antenna with complementary split ring resonator (CSRR) is proposed for tri-band applications. In the design procedure of the antenna, first a single band monopole antenna is designed for 2.88 GHz. For design a single band to dual band, the both arms of the radiating element (i.e. Monopole) is folded then it is resonated at 2.68GHz and 5.15GHz resonance frequencies, the resonance of the lower frequency is based on length of the monopole and higher order resonance is excited due to its folding effect. In order to extend its resonances for tri-band operation, the two identical size CSRRs (one on the left and another on the right from the feed line) are placed on the ground plane of the edge of the folded monopole, thus the entire structure is resonated at 2.47 GHz, 3.46GHz and 4.36 GHz frequencies. A simplified equivalent circuit model is developed for understanding its electrical behavior. Therefore, the proposed antenna has been suitable for WLAN, WiMAX and C-band applica- tions.   


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammed Moulay ◽  
Mehadji Abri ◽  
Hadjira Abri Badaoui

A novel configuration of quad-band bowtie antenna suitable for wireless application is proposed based on accurate equivalent circuit model. The simple configuration and low profile nature of the proposed antenna lead to easy multifrequency operation. The proposed antenna is designed to satisfy specific bandwidth specifications for current communication systems including the Bluetooth (frequency range 2.4–2.485 GHz) and bands of the Unlicensed National Information Infrastructure (U-NII) low band (frequency range 5.15–5.35 GHz) and U-NII mid band (frequency range 5.47–5.725 GHz) and used for mobile WiMAX (frequency range 3.3–3.6 GHz). To validate the proposed equivalent circuit model, the simulation results are compared with those obtained by the moments method of Momentum software, the finite integration technique of CST Microwave studio, and the finite element method of HFSS software. An excellent agreement is achieved for all the designed antennas. The analysis of the simulated results confirms the successful design of quad-band bowtie antenna.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Pracha Osklang ◽  
Chuwong Phongcharoenpanich ◽  
Prayoot Akkaraekthalin

This research presents a triband compact printed antenna for WLAN and WiMAX applications. The antenna structure consists of a folded open stub, long and short L-shaped strips, and asymmetric trapezoid ground plane. Besides, it is of simple structure and operable in 2.4 GHz and 5 GHz (5.2/5.8 GHz) WLAN and 3.5/5.5 GHz WiMAX bands. The folded open stub and long and short L-shaped strips realize impedance matching at 2.4, 3.5, 5.2, and 5.8 GHz, and the asymmetric trapezoid ground plane fine-tunes impedance matching at 5.2, 5.5, and 5.8 GHz. In addition, the equivalent circuit model consolidated into lumped elements is also presented to explain its impedance matching characteristics. In this study, simulations were carried out, and a prototype antenna was fabricated and experimented. The simulation and experimental results are in good agreement. Specifically, the simulated and experimental radiation patterns are omnidirectional at 2.4, 3.5, and 5.2 GHz and near-omnidirectional at 5.5 and 5.8 GHz. Furthermore, the simulated and measured antenna gains are 1.269–3.074 dBi and 1.10–2.80 dBi, respectively. Essentially, the triband compact printed antenna covers 2.4 GHz and 5 GHz (5.2/5.8 GHz) WLAN and 3.5/5.5 GHz WiMAX frequency bands and thereby is a good candidate for WLAN/WiMAX applications.


Sign in / Sign up

Export Citation Format

Share Document