Harvest Weed Seed Control Systems are Similarly Effective on Rigid Ryegrass

2017 ◽  
Vol 31 (2) ◽  
pp. 178-183 ◽  
Author(s):  
Michael J. Walsh ◽  
Charlotte Aves ◽  
Stephen B. Powles

Harvest weed seed control (HWSC) systems have been developed to exploit the high proportions of seed retained at maturity by the annual weeds rigid ryegrass, wild radish, bromegrass, and wild oats. To evaluate the efficacy of HWSC systems on rigid ryegrass populations, three systems, the Harrington Seed Destructor (HSD), chaff carts, and narrow-windrow burning were compared at 24 sites across the western and southern wheat production regions of Australia. HWSC treatments were established at harvest (Nov. – Dec.) in wheat crops with low to moderate rigid ryegrass densities (1 to 26 plants m−2). Rigid ryegrass counts at the commencement of the next growing season (Apr. – May) determined that HWSC treatments were similarly effective in reducing emergence. Chaff carts, narrow-windrow burning, or HSD systems act similarly on rigid ryegrass seed collected during harvest to deliver substantial reductions in subsequent rigid ryegrass populations by restricting seedbank inputs. On average, population densities were reduced by 60%, but there was considerable variation between sites (37 to 90%) as influenced by seed production and the residual seedbank. Given the observed high rigid ryegrass seed production levels at crop maturity it is clear that HWSC has a vital role in preventing seedbank inputs in Australian conservation cropping systems.

2014 ◽  
Vol 28 (3) ◽  
pp. 486-493 ◽  
Author(s):  
Michael J. Walsh ◽  
Stephen B. Powles

Seed production of annual weeds persisting through cropping phases replenishes/establishes viable seed banks from which these weeds will continue to interfere with crop production. Harvest weed seed control (HWSC) systems are now viewed as an effective means of interrupting this process by targeting mature weed seed, preventing seed bank inputs. However, the efficacy of these systems is directly related to the proportion of total seed production that the targeted weed species retains (seed retention) at crop maturity. This study determined the seed retention of the four dominant annual weeds of Australian cropping systems - annual ryegrass, wild radish, brome grass, and wild oat. Beginning at the first opportunity for wheat harvest and on a weekly basis for 28 d afterwards the proportion of total seed production retained above a 15 cm harvest cutting height was determined for these weed species present in wheat crops at nine locations across the Western Australian (WA) wheat-belt. Very high proportions of total seed production were retained at wheat crop maturity for annual ryegrass (85%), wild radish (99%), brome grass (77%), and wild oat (84%). Importantly, seed retention remained high for annual ryegrass and wild radish throughout the 28 d harvest period. At the end of this period, 63 and 79% of total seed production for annual ryegrass and wild radish respectively, was retained above harvest cutting height. However, seed retention for brome grass (41%) and wild oat (39%) was substantially lower after 28 d. High seed retention at crop maturity, as identified here, clearly indicates the potential for HWSC systems to reduce seed bank replenishment and diminish subsequent crop interference by the four most problematic species of Australian crops.


2020 ◽  
pp. 1-22
Author(s):  
Michael J. Walsh ◽  
Annie E. Rayner ◽  
Annie Rutledge ◽  
John C. Broster

Abstract Chaff lining and chaff tramlining are harvest weed seed control (HWSC) systems that involve the concentration of weed seed containing chaff material into narrow (20 to 30 cm) rows between or on the harvester wheel tracks during harvest. These lines of chaff are left intact in the fields through subsequent cropping seasons in the assumption that the chaff environment is unfavourable for weed seed survival. The chaff row environment effect on weed seed survival was examined in field studies, while chaff response studies determined the influence of increasing amounts of chaff on weed seedling emergence. The objectives of these studies were to determine 1) the influence of chaff lines on the summer-autumn seed survival of selected weed species; and 2) the influence of chaff type and amount on rigid ryegrass seedling emergence. There was frequently no difference (P>0.05) in survival of seed of four weed species (rigid ryegrass, wild oat, annual sowthistle and turnip weed) when these seed were placed beneath or beside chaff lines. There was one instance where wild oat seed survival was increased (P<0.05) when seed were placed beneath compared to beside a chaff line. The pot studies determined that increasing amounts of chaff consistently resulted in decreasing numbers of rigid ryegrass seedlings emerging through chaff material. The suppression of emergence broadly followed a linear relationship where there was approximately a 2.0% reduction in emergence with every 1.0 t ha-1 increase in chaff material. This relationship was consistent across wheat, barley, canola and lupin chaff types, indicating that the physical presence of the chaff was more important than chaff type. These studies indicated that chaff lines may not affect the over summer-autumn survival of the contained weed seeds but the subsequent emergence of weed seedlings will be restricted by high amounts of chaff (>40 t ha-1).


2017 ◽  
Vol 32 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Stephen B. Powles

AbstractIn Australia, widespread evolution of multi-resistant weed populations has driven the development and adoption of harvest weed seed control (HWSC). However, due to incompatibility of commonly used HWSC systems with highly productive conservation cropping systems, better HWSC systems are in demand. This study aimed to evaluate the efficacy of the integrated Harrington Seed Destructor (iHSD) mill on the seeds of Australia’s major crop weeds during wheat chaff processing. Also examined were the impacts of chaff type and moisture content on weed seed destruction efficacy. Initially, the iHSD mill speed of 3,000 rpm was identified as the most effective at destroying rigid ryegrass seeds present in wheat chaff. Subsequent testing determined that the iHSD mill was highly effective (>95% seed kill) on all Australian crop weeds examined. Rigid ryegrass seed kill was found to be highest for lupin chaff and lowest in barley, with wheat and canola chaff intermediate. Similarly, wheat chaff moisture reduced rigid ryegrass seed kill when moisture level exceeded 12%. The broad potential of the iHSD mill was evident, in that the reductions in efficacy due to wide-ranging differences in chaff type and moisture content were relatively small (≤10%). The results from these studies confirm the high efficacy and widespread suitability of the iHSD for use in Australian crop production systems. Additionally, as this system allows the conservation of all harvest residues, it is the best HWSC technique for conservation cropping systems.


Weed Science ◽  
2018 ◽  
Vol 66 (5) ◽  
pp. 627-633 ◽  
Author(s):  
Michael J. Walsh ◽  
John C. Broster ◽  
Charlotte Aves ◽  
Stephen B. Powles

AbstractHarvest weed seed control (HWSC) is an Australian innovation, developed to target high proportions of weed seed retained at crop maturity by many major weed species. There is the potential, however, that a reduction in the average height of retained seed is an adaptation to the long-term use of HWSC practices. With the aim of examining the distribution of rigid ryegrass (Lolium rigidumGaudin) seed through crop canopies, a survey of Australian wheat (Triticum aestivumL.) fields was conducted at crop maturity. Nine sites with medium to long-term HWSC use were specifically included to examine the influence of HWSC use on seed retention height. During the 2013 wheat harvest,L. rigidumand wheat plant samples were collected at five heights downward through the crop canopy (40, 30, 20, 10, and 0 cm above ground level) in 71 wheat fields. Increased crop competition resulted in higher proportions ofL. rigidumseed in the upper crop canopy (>40 cm). The increase in plant height is likely a shade-intolerance response ofL. rigidumplants attempting to capture more light. This plant attribute creates the opportunity to use crop competition to improve HWSC efficacy by increasing the average height of seed retention. Crop competition can, therefore, have a double impact by reducing overallL. rigidumseed production and increasing seed retention height. Examining the distribution of wheat biomass andL. rigidumseed through the crop canopy, we determined that reducing harvest height for HWSC considerably increased the collection ofL. rigidumseed (25%) but to a lesser extent wheat crop biomass (14%). Comparison of + and − HWSC use at nine locations found no evidence of adaptation to this form of weed control following 5 to 10 yr of use. Although the potential for resistance to HWSC remains, these results indicate that this will not readily occur in the field.


2015 ◽  
Vol 29 (3) ◽  
pp. 578-586 ◽  
Author(s):  
Rupinder Kaur Saini ◽  
Samuel G. L. Kleemann ◽  
Christopher Preston ◽  
Gurjeet S. Gill

Two field experiments were conducted during 2012 and 2013 at Roseworthy, South Australia to identify effective herbicide options for the management of clethodim-resistant rigid ryegrass in faba bean. Dose–response experiments confirmed resistance in both field populations (B3, 2012 and E2, 2013) to clethodim and butroxydim. Sequencing of the target site of acetyl coenzyme A carboxylase gene in both populations identified an aspartate-2078-glycine mutation. Although resistance of B3 and E2 populations to clethodim was similar (16.5- and 21.4-fold more resistant than the susceptible control SLR4), the B3 population was much more resistant to butroxydim (7.13-fold) than E2 (2.24-fold). Addition of butroxydim to clethodim reduced rigid ryegrass plant density 60 to 80% and seed production 71 to 88% compared with the standard grower practice of simazine PPI plus clethodim POST. Clethodim + butroxydim combination had the highest grain yield of faba bean (980 to 2,400 kg ha−1). Although propyzamide and pyroxasulfone plus triallate PPI provided the next highest levels of rigid ryegrass control (< 60%), these treatments were more variable and unable to reduce seed production (6,354 to 13,570 seeds m−2) to levels acceptable for continuous cropping systems.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 166-171 ◽  
Author(s):  
W. Carroll Johnson ◽  
B. G. Mullinix

Studies were conducted from 1990 through 1994 near Tifton, GA, on the population dynamics of yellow nutsedge and certain annual weeds in peanut—corn and peanut—cotton rotations. Converse rotation sequences were included to eliminate year effects. Continuous fallow plots (noncrop) were included for comparison. Within each crop, including fallow, were 3 levels of weed management: low, moderate, and intensive. Weed densities and numbers of yellow nutsedge tubers were not affected by crop rotations, but they were affected by individual crops and weed management systems in each crop. Fallow plots, including those with intensive fallow weed management using tillage and nonselective herbicides, consistently contained more yellow nutsedge plants and tubers than other plots. Moderate and intensive weed control systems in peanut and cotton reduced yellow nutsedge densities and tubers, but only peanut yields were increased by intensive weed management. Weed management systems did not affect yellow nutsedge densities in corn, although yields were increased by moderate and intensive systems due to improved control of other weeds. Our results suggest that uninterrupted plantings of peanut, corn, or cotton with moderate levels of weed management are generally sufficient to suppress yellow nutsedge and allow for optimum crop yield. If fields are fallow, yellow nutsedge population densities and tubers will increase exponentially, even with intensive fallow weed management.


Weed Research ◽  
2006 ◽  
Vol 35 (4) ◽  
pp. 265-278 ◽  
Author(s):  
B. J. WILSON ◽  
K. J. WRIGHT ◽  
P. BRAIN ◽  
M. CLEMENTS ◽  
E. STEPHENS

2011 ◽  
Vol 29 (3) ◽  
pp. 489-497
Author(s):  
E Soltani ◽  
A Soltani ◽  
S Galeshi ◽  
F Ghaderi-far ◽  
E Zeinali

Volunteer canola (Brassica napus) and Sinapis arvensis are well identified weeds of different cropping systems. Quantitative information on regarding seed production by them is limited. Such information is necessary to model dynamics of soil seed banks. The aim of this work was to quantify seed production as a function of the size of those weeds. A wide range of plant size was produced by using a fan seeding system performed at two sowing dates (environments). Plant size varied from 3 to 167 g per plant for canola and from 6 to 104 g per plant for S. arvensis. Seed production ranged from 543 to14,773 seeds per plant for canola, and from 264 to 10,336 seeds per plant for S. arvensis. There was a close relationship between seed production per plant and plant size which was well-described by a power function (y = 130.6x0.94; R² = 0.93 for canola and y = 28x1.27; R² = 0.95 for S. arvensis). There was also strong relationships among the number of pods produced in individual plants and the quantity of seeds produced (g per plant) with the size of the plant. The relationships found in this study can be used in dynamic seed bank models of volunteer canola and S. arvensis.


Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 175-183 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Sharon Clay

Approaches to crop production that successfully reduce weed seed production can benefit farming systems by reducing management inputs and costs. A 5-yr rotation study was conducted in order to determine the effects that interactions between crop rotation, tillage, and amount of herbicide and fertilizer (management inputs) have on annual grass and broad-leaved weed seed production and fecundity. There were 10 crop rotation and tillage system combinations and three levels of management inputs (high, medium, and low). Green and yellow foxtail were the major weed species, and together they yielded between 76 and 93% of collected weed seeds. From 1990 to 1994, average grass weed seed productions were 7.3 by 103, 3.7 by 1036.1 by 103and 5.7 by 103seeds m−-2, whereas average broad-leaved weed seed productions were 0.4 by 103, 0.4 by 103, 1.4 by 103, and 0.4 by 103seeds m−-2in crop rotations using conventional tillage (moldboard plow), conservation tillage, no tillage, and ridge tillage, respectively. Crop rotations using conventional or ridge tillage consistently produced more grass and broad-leaved weed seeds, especially in low-input plots. There was little difference in weed seed production among input levels for crop rotations using conservation tillage. Comparing rotations that began and ended with a corn crop revealed that by increasing crop diversity within a rotation while simultaneously reducing the amount of tillage, significantly fewer grass and broad-leaved weed seeds were produced. Among the rotations, grass and broad-leaved weed fecundity were highly variable, but fecundity declined from 1990 to 1994 within each rotation, with a concomitant increase in grass and broad-leaved weed density over the same period. Crop rotation in combination with reduced tillage is an effective way of limiting grass and broad-leaved weed seed production, regardless of the level of management input applied.


2021 ◽  
pp. 1-51
Author(s):  
Amit J. Jhala ◽  
Hugh J. Beckie ◽  
Carol Mallory-Smith ◽  
Marie Jasieniuk ◽  
Roberto Busi ◽  
...  

Abstract The objective of this paper was to review the reproductive biology, herbicide-resistant (HR) biotypes, pollen-mediated gene flow (PMGF), and potential for transfer of alleles from HR to susceptible grass weeds including barnyardgrass, creeping bentgrass, Italian ryegrass, johnsongrass, rigid (annual) ryegrass, and wild oats. The widespread occurrence of HR grass weeds is at least partly due to PMGF, particularly in obligate outcrossing species such as rigid ryegrass. Creeping bentgrass, a wind-pollinated turfgrass species, can efficiently disseminate herbicide resistance alleles via PMGF and movement of seeds and stolons. The genus Agrostis contains about 200 species, many of which are sexually compatible and produce naturally occurring hybrids as well as producing hybrids with species in the genus Polypogon. The self-incompatibility, extremely high outcrossing rate, and wind pollination in Italian ryegrass clearly point to PMGF as a major mechanism by which herbicide resistance alleles can spread across agricultural landscapes, resulting in abundant genetic variation within populations and low genetic differentiation among populations. Italian ryegrass can readily hybridize with perennial ryegrass and rigid ryegrass due to their similarity in chromosome numbers (2n=14), resulting in interspecific gene exchange. Johnsongrass, barnyardgrass, and wild oats are self-pollinated species, so the potential for PMGF is relatively low and limited to short distances; however, seeds can easily shatter upon maturity before crop harvest, leading to wider dispersal. The occurrence of PMGF in reviewed grass weed species, even at a low rate is greater than that of spontaneous mutations conferring herbicide resistance in weeds and thus can contribute to the spread of herbicide resistance alleles. This review indicates that the transfer of herbicide resistance alleles occurs under field conditions at varying levels depending on the grass weed species.


Sign in / Sign up

Export Citation Format

Share Document