Transfer of resistance alleles from herbicide-resistant to susceptible grass weeds via pollen-mediated gene flow

2021 ◽  
pp. 1-51
Author(s):  
Amit J. Jhala ◽  
Hugh J. Beckie ◽  
Carol Mallory-Smith ◽  
Marie Jasieniuk ◽  
Roberto Busi ◽  
...  

Abstract The objective of this paper was to review the reproductive biology, herbicide-resistant (HR) biotypes, pollen-mediated gene flow (PMGF), and potential for transfer of alleles from HR to susceptible grass weeds including barnyardgrass, creeping bentgrass, Italian ryegrass, johnsongrass, rigid (annual) ryegrass, and wild oats. The widespread occurrence of HR grass weeds is at least partly due to PMGF, particularly in obligate outcrossing species such as rigid ryegrass. Creeping bentgrass, a wind-pollinated turfgrass species, can efficiently disseminate herbicide resistance alleles via PMGF and movement of seeds and stolons. The genus Agrostis contains about 200 species, many of which are sexually compatible and produce naturally occurring hybrids as well as producing hybrids with species in the genus Polypogon. The self-incompatibility, extremely high outcrossing rate, and wind pollination in Italian ryegrass clearly point to PMGF as a major mechanism by which herbicide resistance alleles can spread across agricultural landscapes, resulting in abundant genetic variation within populations and low genetic differentiation among populations. Italian ryegrass can readily hybridize with perennial ryegrass and rigid ryegrass due to their similarity in chromosome numbers (2n=14), resulting in interspecific gene exchange. Johnsongrass, barnyardgrass, and wild oats are self-pollinated species, so the potential for PMGF is relatively low and limited to short distances; however, seeds can easily shatter upon maturity before crop harvest, leading to wider dispersal. The occurrence of PMGF in reviewed grass weed species, even at a low rate is greater than that of spontaneous mutations conferring herbicide resistance in weeds and thus can contribute to the spread of herbicide resistance alleles. This review indicates that the transfer of herbicide resistance alleles occurs under field conditions at varying levels depending on the grass weed species.

2021 ◽  
pp. 86-102
Author(s):  
Hugh J. Beckie ◽  
Sara L. Martin

Abstract Although herbicide-resistant (HR) weeds can be regularly monitored in fields via surveys, areawide monitoring of both cropland and ruderal (non-crop disturbed) areas is required for species with high propagule mobility. With increasing occurrence of HR weed populations in many agro-ecoregions, the relative contribution of independent evolution through herbicide selection and movement of HR alleles via pollen or seed needs to be elucidated to inform management and help preserve the remaining public good and common resource of herbicide susceptibility. Molecular markers available for many weed species can be utilized to assess regional gene flow accurately. In this chapter, we outline recommended principles and protocols for areawide monitoring of herbicide resistance gene flow in weed populations, exemplified by a case study of glyphosate resistance in kochia (Bassia scoparia A.J. Scott syn. Kochia scoparia (L.) Schrad.) in western Canada. Since being introduced from Eurasia to the Americas over a century ago, both seed- and pollen-mediated gene flow in the species have aided rapid range expansion and the spread of herbicide resistance.


2020 ◽  
pp. 1-15
Author(s):  
Amit J. Jhala ◽  
Jason K. Norsworthy ◽  
Zahoor A. Ganie ◽  
Lynn M. Sosnoskie ◽  
Hugh J. Beckie ◽  
...  

Abstract Pollen-mediated gene flow (PMGF) refers to the transfer of genetic information (alleles) from one plant to another compatible plant. With the evolution of herbicide-resistant (HR) weeds, PMGF plays an important role in the transfer of resistance alleles from HR to susceptible weeds; however, little attention is given to this topic. The objective of this work was to review reproductive biology, PMGF studies, and interspecific hybridization, as well as potential for herbicide resistance alleles to transfer in the economically important broadleaf weeds including common lambsquarters, giant ragweed, horseweed, kochia, Palmer amaranth, and waterhemp. The PMGF studies involving these species reveal that transfer of herbicide resistance alleles routinely occurs under field conditions and is influenced by several factors, such as reproductive biology, environment, and production practices. Interspecific hybridization studies within Amaranthus and Ambrosia spp. show that herbicide resistance allele transfer is possible between species of the same genus but at relatively low levels. The widespread occurrence of HR weed populations and high genetic diversity is at least partly due to PMGF, particularly in dioecious species such as Palmer amaranth and waterhemp compared with monoecious species such as common lambsquarters and horseweed. Prolific pollen production in giant ragweed contributes to PMGF. Kochia, a wind-pollinated species can efficiently disseminate herbicide resistance alleles via both PMGF and tumbleweed seed dispersal, resulting in widespread occurrence of multiple HR kochia populations. The findings from this review verify that intra- and interspecific gene flow can occur and, even at a low rate, could contribute to the rapid spread of herbicide resistance alleles. More research is needed to determine the role of PMGF in transferring multiple herbicide resistance alleles at the landscape level.


1992 ◽  
Vol 6 (3) ◽  
pp. 615-620 ◽  
Author(s):  
Jodie S. Holt

At least 57 weed species, including both dicots and monocots, have been reported to have biotypes selected for resistance to the triazine herbicides. In addition, at least 47 species have been reported to have biotypes resistant to one or more of 14 other herbicides or herbicide families. These herbicides include the aryloxyphenoxypropionics, bipyridiliums, dinitroanilines, phenoxys, substituted areas, and sulfonylureas, with two or more resistant biotypes each, as well as several other herbicides in which resistance is less well documented. Although evolved resistance presents a serious problem for chemical weed control, it has also offered new potential for transferring herbicide resistance to crop species. Mechanisms of resistance that are due to single or a few genes have become the focus of biotechnology, as the probability of their successful transfer to crop species is high.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 641-648 ◽  
Author(s):  
Claudio Rubione ◽  
Sarah M. Ward

The evolution of herbicide-resistant weeds is a major concern in the corn- and soybean-producing Pampas region of Argentina, where growers predominantly plant glyphosate-resistant crop varieties and depend heavily on glyphosate for weed control. Currently, 16 weed species in Argentina are resistant to one or more of three different herbicide mechanisms of action, and resistant weed populations continue to increase, posing a serious threat to agricultural production. Implementation of integrated weed management to address herbicide resistance faces significant barriers in Argentina, especially current land ownership and rental patterns in the Pampas. More than 60% of Pampas cropland is rented to tenants for periods that rarely exceed 1 yr, resulting in crop rotation being largely abandoned, and crop export taxes and quotas have further discouraged wheat and corn production in favor of continuous soybean production. In this paper we discuss ways to facilitate new approaches to weed management in Argentina, including legal and economic reforms and the formation of a national committee of stakeholders from public and private agricultural sectors.


Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 152-157 ◽  
Author(s):  
Hugh J. Beckie ◽  
Ginette Séguin-Swartz ◽  
Harikumar Nair ◽  
Suzanne I. Warwick ◽  
Eric Johnson

Unintentional herbicide resistance gene stacking in canola may alter the sensitivity of volunteers to herbicides of alternative modes of action commonly used for their control. Greenhouse experiments were conducted to investigate the response of three single-herbicide–resistant (HR) cultivars (glyphosate, glufosinate, imidazolinone), one non-HR cultivar, and seven multiple (double or triple)–HR experimental lines to 2,4-D (amine and ester), MCPA ester, and metribuzin applied at the two- to three-leaf stage and of one non-HR and four HR cultivars (glyphosate, glufosinate, imidazolinone, bromoxynil) to 2,4-D amine applied at two growth stages (two- to three-leaf stage and five- to six-leaf stage). All canola cultivars or lines treated at the two- to three-leaf stage responded similarly to increasing doses of each of the three herbicides. At the five- to six-leaf stage, however, the bromoxynil HR cultivar was less sensitive to 2,4-D than the other cultivars. The results of this study suggest that canola with multiple-herbicide–resistance traits does not differ from cultivars that are non-HR or single HR in its sensitivity to herbicides commonly used to control volunteers. All volunteers, whether non-HR, single HR, or multiple HR, should be treated when plants are most sensitive to herbicides (two- to four-leaf stage) to reduce their interference against crops and their perpetuation of gene flow.


2018 ◽  
Vol 32 (5) ◽  
pp. 537-543
Author(s):  
John Godwin ◽  
Jason K. Norsworthy ◽  
Robert C. Scott

AbstractThe evolution of herbicide resistance is making it extremely difficult for US rice producers to use chemical control on weed species such as barnyardgrass and red rice. To combat herbicide resistance, it is imperative that alternative herbicide sites of action (SOAs) be incorporated into rice whenever possible. There are currently no very-long-chain fatty acid–inhibiting herbicides (WSSA Group 15) labeled for use in US rice; however, pethoxamid is one such herbicide currently under development. If appropriate rice tolerance and weed control can be established, pethoxamid would represent a unique herbicide SOA for use in US rice. We conducted field trials near Stuttgart, AR, in 2015 and near Colt and Lonoke, AR, in 2016 to assess selectivity of pethoxamid and weed control alone and in combination with other herbicides as a delayed preemergence (DPRE) application in drill-seeded rice. Pethoxamid was applied at 0, 420, or 560 g ai ha–1 alone and in combination with clomazone, imazethapyr, pendimethalin, and quinclorac. Minimal rice injury occurred with any treatment assessed. A reduction in rice shoot density and plant height compared to the nontreated control followed the use of pethoxamid; however, no decrease in yield resulted. The highest levels of barnyardgrass control followed the use of imazethapyr at 91% and quinclorac at 89% regardless of the presence of pethoxamid near Lonoke; however, pethoxamid applied at both rates in combination with clomazone and quinclorac increased barnyardgrass control compared to clomazone and quinclorac applied alone. Near Colt, barnyardgrass control of 92% and 96% resulted from pethoxamid alone, averaged over the high and low rates. Based on these data, rice can tolerate pethoxamid when applied DPRE, and adequate levels of barnyardgrass control can be achieved at the rates evaluated within a program; hence, pethoxamid appears to be a viable option for use in rice to allow for increased rotation of herbicide SOAs to combat herbicide-resistant and difficult-to-control weeds.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 874
Author(s):  
Marta Stankiewicz-Kosyl ◽  
Agnieszka Synowiec ◽  
Małgorzata Haliniarz ◽  
Anna Wenda-Piesik ◽  
Krzysztof Domaradzki ◽  
...  

Corn poppy (Papaver rhoeas L.) and cornflower (Centaurea cyanus L.) are two overwintering weed species found in crop fields in Europe. They are characterised by a similar life cycle, similar competitive efforts, and a spectrum of herbicides recommended for their control. This review summarises the biology and herbicide resistance phenomena of corn poppy and cornflower in Europe. Corn poppy is one of the most dangerous dicotyledonous weeds, having developed herbicide resistance to acetolactate synthase inhibitors and growth regulators, especially in Mediterranean countries and Great Britain. Target site resistance to acetolactate synthase inhibitors dominates among herbicide-resistant poppy biotypes. The importance of non-target site resistance to acetolactate synthase inhibitors in this species may be underestimated because non-target site resistance is very often associated with target site resistance. Cornflower, meanwhile, is increasingly rare in European agricultural landscapes, with acetolactate synthase inhibitors-resistant biotypes only listed in Poland. However, the mechanisms of cornflower herbicide resistance are not well recognised. Currently, herbicides mainly from acetolactate synthase and photosystem II inhibitors as well as from synthetic auxins groups are recommended for the control of both weeds. Integrated methods of management of both weeds, especially herbicide-resistant biotypes, continue to be underrepresented.


2003 ◽  
Vol 358 (1434) ◽  
pp. 1157-1162 ◽  
Author(s):  
T. R. Meagher ◽  
F. C. Belanger ◽  
P. R. Day

One element of the current public debate about genetically modified crops is that gene flow from transgenic cultivars into surrounding weed populations will lead to more problematic weeds, particularly for traits such as herbicide resistance. Evolutionary biologists can inform this debate by providing accurate estimates of gene flow potential and subsequent ecological performance of resulting hybrids. We develop a model for gene flow incorporating exponential distance and directional effects to be applied to windpollinated species. This model is applied to previously published data on gene flow in experimental plots of Agrostis stolonifera L. (creeping bentgrass), which assessed gene flow from transgenic plants resistant to the herbicide glufosinate to surrounding non–transgenic plants. Our results show that although pollen dispersal can be limited in some sites, it may be extensive in others, depending on local conditions such as exposure to wind. Thus, hybridization under field conditions is likely to occur. Given the nature of the herbicide resistance trait, we regard this trait as unlikely to persist in the absence of herbicide, and suggest that the ecological consequences of such gene flow are likely to be minimal.


2006 ◽  
Vol 86 (4) ◽  
pp. 1243-1264 ◽  
Author(s):  
H. J. Beckie ◽  
K. N. Harker ◽  
L. M. Hall ◽  
S. I. Warwick ◽  
A. Légère ◽  
...  

This review examines some agronomic, economic, and environmental impacts of herbicide-resistant (HR) canola, soybean, corn, and wheat in Canada after 10 yr of growing HR cultivars. The rapid adoption of HR canola and soybean suggests a net economic benefit to farmers. HR crops often have improved weed management, greater yields or economic returns, and similar or reduced environmental impact compared with their non-HR crop counterparts. There are no marked changes in volunteer weed problems associated with these crops, except in zero-tillage systems when glyphosate is used alone to control canola volunteers. Although gene flow from glyphosate-HR canola to wild populations of bird’s rape (Brassica rapa L.) in eastern Canada has been measured, enrichment of hybrid plants in such populations should only occur when and where herbicide selection pressure is applied. Weed shifts as a consequence of HR canola have been documented, but a reduction in weed species diversity has not been demonstrated. However, reliance on HR crops in rotations using the same mode-of-action herbicide and/or multiple in-crop herbicide applications over time can result in intense selection pressure for weed resistance and consequently, greater herbicide use in the future to control HR weed biotypes. History has repeatedly shown that cropping system diversity is the pillar of sustainable agriculture; stewardship of HR crops must adhere to this fundamental principle. Key words: Canola, Brassica napus, corn, Zea mays, soybean, Glycine max, wheat, Triticum aestivum, gene flow, herbicide resistance, transgenic crop, volunteer crop


Sign in / Sign up

Export Citation Format

Share Document