Horseweed (Conyza canadensis) management in Oklahoma winter wheat

2019 ◽  
Vol 34 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

AbstractHalauxifen plus florasulam, thifensulfuron plus fluroxypyr, and bromoxynil plus bicyclopyrone are three, relatively new POST premix herbicides developed for control of broadleaf weeds in winter wheat. These herbicides, along with older products, were evaluated for their control of horseweed in Altus, Perkins, and Ponca City, Oklahoma, during the spring of 2017 and 2018. Horseweed has become a critical weed in Oklahoma because of its extensive germination window, changes in tillage practices, and increase in herbicide-resistant horseweed biotypes. Visual weed control was estimated every 2 wk throughout the growing season and wheat yield was collected from three of the six site-years. Horseweed size ranged from 5 to 20 cm at time of application. The halauxifen plus florasulam, and thifensulfuron plus fluroxypyr combinations were effective at controlling a wide range of horseweed rosette sizes across all locations, whereas control with other treatments varied depending on presence of herbicide resistance, weed size at time of application, and mix partner.

2021 ◽  
pp. 1-14
Author(s):  
Jodie A. Crose ◽  
Misha R. Manuchehri ◽  
Todd A. Baughman

Abstract Three herbicide premixes have recently been introduced for weed control in wheat. These include: halauxifen + florasulam, thifensulfuron + fluroxypyr, and bromoxynil + bicyclopyrone. The objective of this study was to evaluate these herbicides along with older products for their control of smallseed falseflax in winter wheat in Oklahoma. Studies took place during the 2017, 2018, and 2020 winter wheat growing seasons. Weed control was visually estimated every two weeks throughout the growing season and wheat yield was collected in all three years. Smallseed falseflax size was approximately six cm in diameter at time of application in all years. Control ranged from 96 to 99% following all treatments with the exception of bicyclopyrone + bromoxynil and dicamba alone, which controlled falseflax 90%. All treatments containing an acetolactate synthase (ALS)-inhibiting herbicide achieved adequate control; therefore, resistance is not suspected in this population. Halauxifen + florasulam and thifensulfuron + fluroxypyr effectively controlled smallseed falseflax similarly to other standards recommended for broadleaf weed control in wheat in Oklahoma. Rotational use of these products allows producers flexibility in controlling smallseed falseflax and reduces the potential for development of herbicide resistance in this species.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1879
Author(s):  
Martina Badano Perez ◽  
Hugh J. Beckie ◽  
Gregory R. Cawthray ◽  
Danica E. Goggin ◽  
Roberto Busi

Overreliance on herbicides for weed control is conducive to the evolution of herbicide resistance. Lolium rigidum (annual ryegrass) is a species that is prone to evolve resistance to a wide range of herbicide modes of action. Rapid detection of herbicide-resistant weed populations in the field can aid farmers to optimize the use of effective herbicides for their control. The feasibility and utility of a rapid 7-d agar-based assay to reliably detect L. rigidum resistant to key pre- and post-emergence herbicides including clethodim, glyphosate, pyroxasulfone and trifluralin were investigated in three phases: correlation with traditional pot-based dose-response assays, effect of seed dormancy, and stability of herbicides in agar. Easy-to-interpret results were obtained using non-dormant seeds from susceptible and resistant populations, and resistance was detected similarly as pot-based assays. However, the test is not suitable for trifluralin because of instability in agar as measured over a 10-d period, as well as freshly-harvested seeds due to primary dormancy. This study demonstrates the utility of a portable and rapid assay that allows for on-farm testing of clethodim, glyphosate, and pyroxasulfone resistance in L. rigidum, thereby aiding the identification and implementation of effective herbicide control options.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Nader Soltani ◽  
C. Shropshire ◽  
Peter H. Sikkema

In recent years, there has been a rapid increase in the number of herbicide-resistant weeds, including glyphosate-resistant (GR) biotypes in Ontario, Canada. A total of six field experiments were conducted over a two-year period (2018 and 2019) to determine the control of GR Canada fleabane (Conyza canadensis (L.) Cronq.) with currently available herbicides for winter wheat in Ontario. Winter wheat was not injured with any of the herbicides evaluated. Among herbicides evaluated, pyrasulfotole/bromoxynil (preformulated), 2,4-D ester, halauxifen, fluroxypyr/halauxifen (preformulated) + MCPA, pyrasulfotole/bromoxynil/fluroxypyr (preformulated), pyrasulfotole/bromoxynil/thiencarbazone (preformulated), pyrasulfotole/bromoxynil/thiencarbazone + MCPA, and fluroxypyr/halauxifen + pyroxsulam + MCPA controlled GR Canada fleabane 94–100% at 8 weeks after application (WAA) and reduced density 95–100% and biomass 97–100%. Reduced GR Canada fleabane interference with pyrasulfotole/bromoxynil/thiencarbazone + MCPA increased winter wheat yield 27% compared to the weedy control. GR Canada fleabane interference had no adverse effect on winter wheat yield with all other treatments. Based on these results, herbicide treatments that include 2,4-D, pyrasulfotole, or halauxifen can adequately control GR Canada fleabane in winter wheat.


Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


1992 ◽  
Vol 6 (3) ◽  
pp. 615-620 ◽  
Author(s):  
Jodie S. Holt

At least 57 weed species, including both dicots and monocots, have been reported to have biotypes selected for resistance to the triazine herbicides. In addition, at least 47 species have been reported to have biotypes resistant to one or more of 14 other herbicides or herbicide families. These herbicides include the aryloxyphenoxypropionics, bipyridiliums, dinitroanilines, phenoxys, substituted areas, and sulfonylureas, with two or more resistant biotypes each, as well as several other herbicides in which resistance is less well documented. Although evolved resistance presents a serious problem for chemical weed control, it has also offered new potential for transferring herbicide resistance to crop species. Mechanisms of resistance that are due to single or a few genes have become the focus of biotechnology, as the probability of their successful transfer to crop species is high.


2019 ◽  
Vol 11 (9) ◽  
pp. 1088 ◽  
Author(s):  
Yulong Wang ◽  
Xingang Xu ◽  
Linsheng Huang ◽  
Guijun Yang ◽  
Lingling Fan ◽  
...  

The accurate and timely monitoring and evaluation of the regional grain crop yield is more significant for formulating import and export plans of agricultural products, regulating grain markets and adjusting the planting structure. In this study, an improved Carnegie–Ames–Stanford approach (CASA) model was coupled with time-series satellite remote sensing images to estimate winter wheat yield. Firstly, in 2009 the entire growing season of winter wheat in the two districts of Tongzhou and Shunyi of Beijing was divided into 54 stages at five-day intervals. Net Primary Production (NPP) of winter wheat was estimated by the improved CASA model with HJ-1A/B satellite images from 39 transits. For the 15 stages without HJ-1A/B transit, MOD17A2H data products were interpolated to obtain the spatial distribution of winter wheat NPP at 5-day intervals over the entire growing season of winter wheat. Then, an NPP-yield conversion model was utilized to estimate winter wheat yield in the study area. Finally, the accuracy of the method to estimate winter wheat yield with remote sensing images was verified by comparing its results to the ground-measured yield. The results showed that the estimated yield of winter wheat based on remote sensing images is consistent with the ground-measured yield, with R2 of 0.56, RMSE of 1.22 t ha−1, and an average relative error of −6.01%. Based on time-series satellite remote sensing images, the improved CASA model can be used to estimate the NPP and thereby the yield of regional winter wheat. This approach satisfies the accuracy requirements for estimating regional winter wheat yield and thus may be used in actual applications. It also provides a technical reference for estimating large-scale crop yield.


2002 ◽  
Vol 139 (4) ◽  
pp. 385-395 ◽  
Author(s):  
A. M. BLAIR ◽  
P. A. JONES ◽  
R. H. INGLE ◽  
N. D. TILLETT ◽  
T. HAGUE

Two systems for integrated weed control in winter wheat based around the combination of herbicides with cultural control have been investigated and compared with conventional practice in experiments between 1993 and 2001. These systems were (a) an overall spray of a reduced herbicide dose followed by spring tine harrow weeding and (b) the combination of herbicide applied over the crop row with a novel vision guided inter-row hoe. The latter required wheat to be established with a wider (22 cm) inter-row spacing than standard (12·5 cm). Experiments over 10 sites/seasons indicated that this increased spacing could be achieved without yield loss. Trials to measure the accuracy of hoe blade lateral positioning using the vision guidance system indicated that error was normally distributed with standard deviation of 12 mm and a bias that could be set to within 1 cm. This performance could be maintained through the normal hoeing period and the crop row location and tracking techniques were robust to moderate weed infestation. In the absence of weeds neither overall harrowing nor inter-row hoeing affected winter wheat yield, 1000-seed weight or specific weight in 12·5 or 22 cm rows. When combined with inter-row hoeing, manually targeted banded applications of fluazolate, pendimethalin or isoproturon reduced grass weed levels and increased yields over untreated controls, though better results were obtained using overall herbicides. However, improvements would be possible with more accurately targeted herbicide applications and more effective inter-row grass weed control. The implications and costs of using such an integrated system are discussed and requirements for future developments identified.


2014 ◽  
Vol 59 (4) ◽  
pp. 195-203
Author(s):  
Yukinori Ono ◽  
Hirokazu Sato ◽  
Koji Odahara ◽  
Tomoya Hirata ◽  
Hideki Odan

2000 ◽  
Vol 80 (2) ◽  
pp. 441-449 ◽  
Author(s):  
J. R. Moyer ◽  
R. E. Blackshaw ◽  
E. G. Smith ◽  
S. M. McGinn

Cropping systems in western Canada that include summer fallow can leave the soil exposed to erosion and require frequent weed control treatments. Cover crops have been used for soil conservation and to suppress weed growth. Experiments were conducted under rain-fed conditions at Lethbridge, Alberta to determine the effect of short-term fall rye (Secale cereale L.), winter wheat (Triticum aestivum L.) and annual rye cover crops in the fallow year on weed growth and subsequent wheat yield. Under favorable weather conditions fall rye was as effective as post-harvest plus early spring tillage or herbicides in spring weed control. Winter wheat and fall rye residues, after growth was terminated in June, reduced weed biomass in September by 50% compared to no cover crop in 1993 but had little effect on weeds in 1995. Fall-seeded cover crops reduced the density of dandelion (Taraxacum officinale Weber in Wiggers) and Canada thistle [Cirsium arvense (L.) Scop.] but increased the density of downy brome (Bromus tectorum L.), wild buckwheat (Polygonum convolvulus L.), and thyme-leaved spurge (Euphorbia serpyllifolia Pers.) in the following fall or spring. Wheat yields after fall rye and no cover crop were similar but yields after spring-seeded annual rye were less than after no cover crop. Spring-seeded annual rye did not adequately compete with weeds. Cover crops, unlike the no cover crop treatment, always left sufficient plant residue to protect the soil from erosion until the following wheat crop was seeded. Key words: Allelopathies, fall rye, nitrogen, soil conservation, soil moisture, weed control, spring rye, winter wheat


Author(s):  
V. V. Poznyak

This is the first time in conditions of Semisavanna of Ukraine when mutual effect of winter wheat precursors and three complex growth-regulating preparations on the growth, development and yield of winter wheat grain has been studied. It has been determined that Antistress, Mars-EL and four amino acid complex preparations can be used for winter wheat growing technology with the aim to increase its yield both during the naked fallow sowing, and after a grain precur- © Позняк В. В., 2019 sor. Greater effect is provided by preparations at winter wheat re-sowing - the yield increase made 0.32-0.81 t/ha. The less significant but stable increase in yield of 0.27-0.59 t/ha is provided by complex growth-regulating preparations during sowing wheat over wheat. Use of the studied complex preparations with a wide range of action throughout the growing season had a positive effect on indicators characterizing growth, development and formation of winter wheat yield. The most effective was the joint use of Antistress and Mars-EL preparations (0.5-0.71 t/ha increase) and all the three drugs together (Antistress + Mars-EL + amino acid complex) when additional 0.59-0.81 t/ha of grain was obtained. Thus, our research has shown that use of new promising growth-regulating agents for winter wheat growing technology makes it possible to implement its genetic potential and increase yield more efficiently, which undoubtedly is of a great importance for agricultural farms specializing in production of this crop.


Sign in / Sign up

Export Citation Format

Share Document