Influence of Recovery Treatments on Dicamba-injured Soybean

2021 ◽  
pp. 1-20
Author(s):  
Brian R. Dintelmann ◽  
Shea T. Farrell ◽  
Kevin W. Bradley

Abstract Non-dicamba resistant soybean yield loss resulting from dicamba off-target injury has become an increasing concern for soybean growers in recent years. After off-target dicamba movement occurs onto sensitive soybean, little information is available on tactics that could be used to mitigate the cosmetic or yield losses that may occur. Therefore, a field experiment was conducted in 2017, 2018, and 2019 to determine if certain recovery treatments of fungicide, plant growth hormone, macro- and micronutrient fertilizer combinations, or weekly irrigation could reduce dicamba injury and/or result in similar yield to soybean that was not injured with dicamba. Simulated drift events of dicamba (5.6 g ae ha−1) were applied to non-dicamba resistant soybean once they reached the V3 or R2 stages of growth. Recovery treatments were applied approximately 14 d after the simulated drift event. Weekly irrigation was the only recovery treatment that provided appreciable levels of injury reduction or increases in soybean height or yield compared to the dicamba-injured plants. Weekly irrigation following the R2 dicamba injury event resulted in an 1% to 14% increase in soybean yield compared to the dicamba-injured control. All other recovery treatments resulted in soybean yields similar to the dicamba-injured control, and similar to or lower than the non-treated control. Results from this study indicate that if soybean have become injured with dicamba, weekly irrigation will help soybean recover some of the yield loss and reduce injury symptoms that resulted from off-target dicamba movement, especially in a year with below average precipitation. However, yield loss will likely not be restored to that of non-injured soybean.

Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2152-2157 ◽  
Author(s):  
David A. Marburger ◽  
Damon L. Smith ◽  
Shawn P. Conley

The impact of today’s optimal planting dates on sudden death syndrome (SDS) (caused by Fusarium virguliforme) development and soybean yield loss are not yet well understood. Field trials established in Hancock, Wisconsin during 2013 and 2014 investigated interactions between planting date and cultivar on SDS development and soybean yield. In 2013, disease index (DX) levels differed among cultivars, but results showed no difference between the 6 May and 24 May planting dates. Significantly lower DX levels were observed for the 17 June date. Greatest yields were found in the 6 May planting date, and yield losses were 720 (17%), 770 (20%), and 400 kg ha−1 (12%) for the 6 May, 24 May, 17 and June planting dates, respectively. In 2014, cultivars again differed for DX, but results showed highest DX levels in the 5 May planting date, with little disease observed in the 22 May and 11 June dates. Yield losses were 400 (12%) and 270 kg ha−1 (9%) for the 5 May and 22 May dates, respectively, but no difference was found in the 11 June date. Despite the most symptom development, these results suggest early May planting coupled with appropriate cultivar selection provides maximum yield potential and profitability in Wisconsin.


2017 ◽  
Vol 18 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Tom W. Allen ◽  
Carl A. Bradley ◽  
Adam J. Sisson ◽  
Emmanuel Byamukama ◽  
Martin I. Chilvers ◽  
...  

Annual decreases in soybean (Glycine max L. Merrill) yield caused by diseases were estimated by surveying university-affiliated plant pathologists in 28 soybean-producing states in the United States and in Ontario, Canada, from 2010 through 2014. Estimated yield losses from each disease varied greatly by state or province and year. Over the duration of this survey, soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) was estimated to have caused more than twice as much yield loss than any other disease. Seedling diseases (caused by various pathogens), charcoal rot (caused by Macrophomina phaseolina (Tassi) Goid), and sudden death syndrome (SDS) (caused by Fusarium virguliforme O’Donnell & T. Aoki) caused the next greatest estimated yield losses, in descending order. The estimated mean economic loss due to all soybean diseases, averaged across U.S. states and Ontario from 2010 to 2014, was $60.66 USD per acre. Results from this survey will provide scientists, breeders, governments, and educators with soybean yield-loss estimates to help inform and prioritize research, policy, and educational efforts in soybean pathology and disease management.


2017 ◽  
Vol 31 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Nader Soltani ◽  
J. Anita Dille ◽  
Ian C. Burke ◽  
Wesley J. Everman ◽  
Mark J. VanGessel ◽  
...  

Weeds are one of the most significant, and controllable, threats to crop production in North America. Monetary losses because of reduced soybean yield and decreased quality because of weed interference, as well as costs of controlling weeds, have a significant economic impact on net returns to producers. Previous Weed Science Society of America (WSSA) Weed Loss Committee reports, as chaired by Chandler (1984) and Bridges (1992), provided snapshots of the comparative crop yield losses because of weeds across geographic regions and crops within these regions after the implementation of weed control tactics. This manuscript is a second report from the current WSSA Weed Loss Committee on crop yield losses because of weeds, specifically in soybean. Yield loss estimates were determined from comparative observations of soybean yields between the weedy control and plots with greater than 95% weed control in studies conducted from 2007 to 2013. Researchers from each US state and Canadian province provided at least three and up to ten individual comparisons for each year, which were then averaged within a year, and then averaged over the seven years. These percent yield loss values were used to determine total soybean yield loss in t ha−1and bu acre−1based on average soybean yields for each state or province as well as current commodity prices for a given year as summarized by USDA-NASS (2014) and Statistics Canada (2015). Averaged across 2007 to 2013, weed interference in soybean caused a 52.1% yield loss. Based on 2012 census data in the US and Canada soybean was grown on 30,798,512 and 1,679,203 hectares with production of 80 million and 5 million tonnes, respectively. Using an average soybean price across 2007 to 2013 of US $389.81 t−1($10.61 bu−1), farm gate value would be reduced by US $16.2 billion in the US and $1.0 billion in Canada annually if no weed management tactics were employed.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1616
Author(s):  
Rea Maria Hall ◽  
Bernhard Urban ◽  
Helmut Wagentristl ◽  
Gerhard Karrer ◽  
Anna Winter ◽  
...  

Ambrosia artemisiifolia L. (Asteraceae), known as common ragweed, is an annual herbaceous species native to North America that has become one of the most economically important weeds in arable fields throughout Central Europe. Its large ecological amplitude enables the species to become established in several types of environments, and management options to effectively contain its spread are limited due to a lack of efficacy, high cost, or lack of awareness. In the last decade, in particular, soybean fields have been severely affected by common ragweed invasion. However, until now, information on the yield-decreasing effects of the plant has been scarce. Therefore, the aim of this study was to evaluate the competition effects of common ragweed on (1) soybean growth (aboveground/belowground), (2) the yield of two different soybean cultivars, and (3) the nodulation potential. Based on a greenhouse and biennial field trial, we found that in plots with the highest common ragweed biomass, the soybean yield loss accounted for 84% compared to the weed-free control, on average. The number of nodules, in addition to the mean nodule weight, which are tightly correlated with soybean yield, were significantly reduced by the presence of common ragweed. Just one common ragweed plant per square meter reduced the number of nodules by 56%, and consequently led to a decrease in yield of 18%. Although it has been reported that the genus Ambrosia produces and releases several types of secondary metabolites, little is known about the influence of these chemical compounds on soybean growth and nodulation. Thus, there is substantial need for research to understand the mechanisms behind the interaction between common ragweed and soybean, with a view to finding new approaches for improved common ragweed control, thereby protecting soybean and other crops against substantial yield losses.


Author(s):  
Jaspa Samwel ◽  
Theodosy Msogoya ◽  
Abdul Kudra ◽  
Hosea Dunstan Mtui ◽  
Anna Baltazari ◽  
...  

Abstract Background Orange (Citrus sinensis L.) production in Tanzania is constrained by several pre-harvest factors that include pests. Hexanal, sprayed as Enhanced Freshness Formulation (EFF) is a relatively new technology that has been reported to reduce pre-harvest loss in fruits. However, the effects of hexanal on pre-harvest yield loss of orange are not known. We studied the effects of hexanal as EFF on yield losses of three sweet orange cultivars namely, Early Valencia, Jaffa, and Late Valencia. Factorial experiments tested the effects of EFF concentration, variety, and time of EFF application on number of dropped fruit, percentage of non-marketable fruit and incidence of pest damage. Results Results showed significant negative correlation (p < 0.001) between EFF and the percentage of dropped fruit, non-marketable yield, and incidence of pest damage. An increase in hexanal concentration by 1%, is expected to reduce number of dropped fruit by 50, percentage of non-marketable by 35.6, and incidences of pest damage by 36.5% keeping other factors constant. Results also show significant association (p < 0.001) between time of hexanal application and non-marketable yield. Percentage of dropped fruit is expected to increase by 1 for each day away from harvest, keeping other factors constant. Conclusion Pre-harvest application of hexanal as EFF can significantly reduce number of dropped fruits, percentage of non-marketable fruit and incidence of pest damage.


2010 ◽  
Vol 46 (No. 1) ◽  
pp. 21-26 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
O. Veškrna ◽  
L. Bobková

Reactions to artificial infection with Fusarium graminearum isolates and a new fungicide Swing Top were studied in nine winter wheat cultivars evaluated in field experiments at two sites for three years for expression of symptoms, deoxynivalenol (DON) content in grain and grain yield. The results demonstrate a pronounced and relatively stable effect of cultivar resistance on reducing head blight, grain yield losses and contamination of grain by the mycotoxin DON. It is advantageous that the moderate level of resistance to Fusarium head blight (FHB) was detected also in two commonly grown Czech cultivars Sakura and Simila. Average fungicide efficacy for DON was 49.5% and 63.9% for a reduction in yield loss, however, it was found highly variable in different years and sites. The joint effect of cultivar resistance and fungicide treatment was 86.5% for DON and even 95.4% for reducing the yield loss. A very high risk was documented for susceptible cultivars and also the effects of medium responsive cultivars were found to be highly variable in different environments and therefore not guaranteeing sufficient protection against FHB under different conditions.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
R.M. IKRAM ◽  
A. TANVEER ◽  
R. MAQBOOL ◽  
M.A. NADEEN

ABSTRACT: Brown chickpea (Cicer arietinum L.) is one of the two chickpea types grown in Pakistan and other countries. The critical period for weed removal in a rainfed chickpea system is an important consideration in devising weed management strategies. Field experiments were conducted in the winter season of 2011 and 2012 to determine the extent of yield loss with different periods of weed crop competition. Seven weed crop competition periods (0, 45, 60, 75, 90, 105 and 160 days after sowing - DAS) were used to identify the critical period for weed removal in rainfed chickpea. Experimental plots were naturally infested with Euphorbia dracunculoides and Astragalus sp. in both years. Individual, composite density and dry weights of E. dracunculoides and Astragalussp. increased significantly with an increase in the competition period. However, yield and yield-contributing traits of chickpea significantly decreased with an increase in the competition period. Chickpea seed yield loss was 11-53% in different weed crop competition periods. Euphorbia dracunculoides and Astragalus sp. removed 39.9 and 36.9 kg ha-1 of N, 9.61 and 7.27 kg ha-1 of P and 38.3 and 36.9 kg ha-1 of K, respectively. Season long weed competition (160 days after sowing) resulted in 19.5% seed protein content compared with 24.5% seed protein content in weed-free chickpea. A Logistic equation was fitted to yield data in response to increasing periods of weed crop competition. The critical timing of weed removal at 5 and 10% acceptable yield losses were 26 and 39 DAS, respectively. The observed critical period suggests that in rainfed chickpea, a carefully timed weed removal could prevent grain yield losses.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 495-500 ◽  
Author(s):  
Jill Alms ◽  
Sharon A. Clay ◽  
David Vos ◽  
Michael Moechnig

The widespread adoption of glyphosate-resistant corn and soybean in cropping rotations often results in volunteer plants from the previous season becoming problem weeds that require alternative herbicides for control. Corn yield losses due to season-long volunteer soybean competition at several densities in two growing seasons were used to define a hyperbolic yield loss function. The maximum corn yield loss observed at high volunteer soybean densities was about 56%, whereas, the incremental yield loss (I) at low densities was 3.2%. Corn yield loss at low volunteer soybean densities was similar to losses reported for low densities of velvetleaf and redroot pigweed, with 10% yield loss estimated to occur at 3 to 4 volunteer soybean plants m−2. Several herbicides, including dicamba with or without diflufenzopyr applied at the V2 growth stage of volunteer soybean, provided > 90% control, demonstrating several economical options to control volunteer glyphosate-resistant soybean in glyphosate-resistant corn. Reevaluation of control recommendations may be needed with commercialization of other genetically modified herbicide-resistant soybean varieties.


2011 ◽  
Vol 51 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Jagdev Kular ◽  
Sarwan Kumar

Quantification of Avoidable Yield Losses in OilseedBrassicaCaused by Insect PestsA six year field study was conducted from 2001-2002 to 2006-2007 at Punjab Agricultural University, Ludhiana, India to study the losses in seed yield of differentBrassicaspecies (B. juncea, B. napus, B. carinata, B. rapaandEruca sativa) by the infestation of insect pests. The experiment was conducted in two different sets viz. protected/sprayed and unprotected, in a randomized block design, with three replications. Data on the infestation of insect pests, and seed yield were recorded at weekly intervals and at harvest, respectively. The loss in seed yield, due to mustard aphid and cabbage caterpillar, varied from 6.5 to 26.4 per cent.E. sativasuffered the least loss in seed yield and harboured the minimum population of mustard aphid (2.1 aphids/plant) and cabbage caterpillar (2.4 larvae/plant). On the other hand,B. carinatawas highly susceptible to the cabbage caterpillar (26.2 larvae/plant) and suffered the maximum yield loss (26.4%).


2021 ◽  
Author(s):  
Henriette Goyeau

Abstract Leaf rust seldom kills wheat, but it is capable of causing 35-50% yield loss in endemic areas on susceptible cultivars, where severity levels of 25-40% are reached at the tillering stage and 100% at the flowering stage. The disease causes more damage worldwide than other wheat rusts. Quarantine is of no relevance as leaf rust is of worldwide occurrence and virulences spread freely between nations and zones. Crop losses are dependent on the genetic resistance of each cultivar, pathogen virulence and environmental conditions. Losses caused by leaf rust particularly originate from reductions of the wheat photosynthetic area. Infected plants normally produce a lower number of tillers, lower amounts of grains per head and smaller grains. The earlier the epidemic in the cropping season, the higher the yield losses. Mathematical models for estimating disease severity and crop losses have been developed based on multiple-point disease recording at different physiological stages of the plant (Burleigh et al., 1972; Eversmeyer and Kramer, 1998, 2000).


Sign in / Sign up

Export Citation Format

Share Document