scholarly journals Common Ragweed (Ambrosia artemisiifolia L.) Causes Severe Yield Losses in Soybean and Impairs Bradyrhizobium japonicum Infection

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1616
Author(s):  
Rea Maria Hall ◽  
Bernhard Urban ◽  
Helmut Wagentristl ◽  
Gerhard Karrer ◽  
Anna Winter ◽  
...  

Ambrosia artemisiifolia L. (Asteraceae), known as common ragweed, is an annual herbaceous species native to North America that has become one of the most economically important weeds in arable fields throughout Central Europe. Its large ecological amplitude enables the species to become established in several types of environments, and management options to effectively contain its spread are limited due to a lack of efficacy, high cost, or lack of awareness. In the last decade, in particular, soybean fields have been severely affected by common ragweed invasion. However, until now, information on the yield-decreasing effects of the plant has been scarce. Therefore, the aim of this study was to evaluate the competition effects of common ragweed on (1) soybean growth (aboveground/belowground), (2) the yield of two different soybean cultivars, and (3) the nodulation potential. Based on a greenhouse and biennial field trial, we found that in plots with the highest common ragweed biomass, the soybean yield loss accounted for 84% compared to the weed-free control, on average. The number of nodules, in addition to the mean nodule weight, which are tightly correlated with soybean yield, were significantly reduced by the presence of common ragweed. Just one common ragweed plant per square meter reduced the number of nodules by 56%, and consequently led to a decrease in yield of 18%. Although it has been reported that the genus Ambrosia produces and releases several types of secondary metabolites, little is known about the influence of these chemical compounds on soybean growth and nodulation. Thus, there is substantial need for research to understand the mechanisms behind the interaction between common ragweed and soybean, with a view to finding new approaches for improved common ragweed control, thereby protecting soybean and other crops against substantial yield losses.

2021 ◽  
pp. 1-20
Author(s):  
Brian R. Dintelmann ◽  
Shea T. Farrell ◽  
Kevin W. Bradley

Abstract Non-dicamba resistant soybean yield loss resulting from dicamba off-target injury has become an increasing concern for soybean growers in recent years. After off-target dicamba movement occurs onto sensitive soybean, little information is available on tactics that could be used to mitigate the cosmetic or yield losses that may occur. Therefore, a field experiment was conducted in 2017, 2018, and 2019 to determine if certain recovery treatments of fungicide, plant growth hormone, macro- and micronutrient fertilizer combinations, or weekly irrigation could reduce dicamba injury and/or result in similar yield to soybean that was not injured with dicamba. Simulated drift events of dicamba (5.6 g ae ha−1) were applied to non-dicamba resistant soybean once they reached the V3 or R2 stages of growth. Recovery treatments were applied approximately 14 d after the simulated drift event. Weekly irrigation was the only recovery treatment that provided appreciable levels of injury reduction or increases in soybean height or yield compared to the dicamba-injured plants. Weekly irrigation following the R2 dicamba injury event resulted in an 1% to 14% increase in soybean yield compared to the dicamba-injured control. All other recovery treatments resulted in soybean yields similar to the dicamba-injured control, and similar to or lower than the non-treated control. Results from this study indicate that if soybean have become injured with dicamba, weekly irrigation will help soybean recover some of the yield loss and reduce injury symptoms that resulted from off-target dicamba movement, especially in a year with below average precipitation. However, yield loss will likely not be restored to that of non-injured soybean.


Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2152-2157 ◽  
Author(s):  
David A. Marburger ◽  
Damon L. Smith ◽  
Shawn P. Conley

The impact of today’s optimal planting dates on sudden death syndrome (SDS) (caused by Fusarium virguliforme) development and soybean yield loss are not yet well understood. Field trials established in Hancock, Wisconsin during 2013 and 2014 investigated interactions between planting date and cultivar on SDS development and soybean yield. In 2013, disease index (DX) levels differed among cultivars, but results showed no difference between the 6 May and 24 May planting dates. Significantly lower DX levels were observed for the 17 June date. Greatest yields were found in the 6 May planting date, and yield losses were 720 (17%), 770 (20%), and 400 kg ha−1 (12%) for the 6 May, 24 May, 17 and June planting dates, respectively. In 2014, cultivars again differed for DX, but results showed highest DX levels in the 5 May planting date, with little disease observed in the 22 May and 11 June dates. Yield losses were 400 (12%) and 270 kg ha−1 (9%) for the 5 May and 22 May dates, respectively, but no difference was found in the 11 June date. Despite the most symptom development, these results suggest early May planting coupled with appropriate cultivar selection provides maximum yield potential and profitability in Wisconsin.


Plant Disease ◽  
2021 ◽  
Author(s):  
Frankie Crutcher ◽  
Yesuf Assen Mohammed ◽  
Chengci Chen ◽  
Sherry Turner

Ascochyta blight (AB), caused by the pathogen Ascochyta rabiei, is a major threat to chickpea production worldwide causing major yield losses and decreasing quality. Control of AB requires integrating pest management options including resistant cultivars and fungicide applications. To address this, fungicides with different modes of action were evaluated on three chickpea cultivars with differing levels of susceptibility to AB under irrigated and dryland conditions in 2015 to 2017. The fungicides were applied once or twice and compared to a no fungicide application control on AB score and yield. The mean grain yields across locations and years were 1753, 1283 and 981 kg/ha, with a corresponding AB mean score of 2.6, 3.2, and 3.3 on 0 to 7 scale (where 0 is no disease and 7 is completely dead) for the moderately resistant, moderately susceptible, and susceptible chickpea cultivars, respectively. Fungicide application was not enough to control disease throughout the season. The use of AB resistant cultivars had the most significant impact on minimizing the disease and maximizing yield, irrespective of year and location. This study supports previous research indicating that planting AB resistant chickpea cultivars is essential for disease control, regardless of the fungicides applied.


Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 947-954 ◽  
Author(s):  
Michael J. Cowbrough ◽  
Ralph B. Brown ◽  
François J. Tardif

One approach to site-specific weed control is to map weeds within a field and then divide the field area into smaller grid units. The decision to apply a herbicide to individual grid units, or decision units, is made by using yield loss models to establish an economic threshold level. However, decision units often contain weed populations with aggregated distributions. Many yield loss models have not considered this because experiments dealing with weed–crop competition typically assume uniform weed distributions. Therefore, these models may overestimate yield losses. Field experiments conducted in 1999 and 2000 compared the effects of common ragweed having a uniform distribution vs. an aggregated distribution on soybean seed yield, moisture content, and dockage. Field experiment data were used to calculate and compare economic thresholds for both distributions. Economic thresholds that considered drying costs and dockage also were compared. There was no significant difference inIparameters (yield loss as density approaches zero) between the two ragweed distributions in either year. Seed moisture content and dockage increased with increasing common ragweed densities, but increases were not significant at the break-even yield loss level. Economic threshold values were similar for both distributions with differences between aggregated and uniform of 0.14 and 0.01 plants m−2in 1999 and 2000, respectively. The economic threshold values were reduced by 0.01 to 0.06 plants m−2when drying costs and dockage were considered.


1991 ◽  
Vol 5 (2) ◽  
pp. 263-269 ◽  
Author(s):  
John D. Byrd ◽  
Harold D. Coble

In 1987 and 1988, effects of full-season interference of individual weeds on cotton yield were measured with area of influence procedures. In 1987, one spurred anoda, common cocklebur, large crabgrass, jimsonweed, common lambsquarters, redroot pigweed, common ragweed, or prickly sida plant per 3 m of row reduced cotton yield between 1% and 7%. Sicklepod did not cause a detectable yield loss. Redroot pigweed, common cocklebur and common ragweed caused 7%, 6% and 5% yield loss, respectively, in 1987. In row weed influence varied from 17 cm (large crabgrass interference) to 86 cm (common cocklebur interference). In 1988, yield losses by individual weeds ranged from 3% to 27%. Common cocklebur, jimsonweed, and common ragweed reduced cotton yields 28%, 15% and 12%, respectively. Spurred anoda and common cocklebur influenced 160 cm and 136 cm of cotton row, respectively. Sicklepod influenced only 47 cm of cotton row.


2017 ◽  
Vol 18 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Tom W. Allen ◽  
Carl A. Bradley ◽  
Adam J. Sisson ◽  
Emmanuel Byamukama ◽  
Martin I. Chilvers ◽  
...  

Annual decreases in soybean (Glycine max L. Merrill) yield caused by diseases were estimated by surveying university-affiliated plant pathologists in 28 soybean-producing states in the United States and in Ontario, Canada, from 2010 through 2014. Estimated yield losses from each disease varied greatly by state or province and year. Over the duration of this survey, soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) was estimated to have caused more than twice as much yield loss than any other disease. Seedling diseases (caused by various pathogens), charcoal rot (caused by Macrophomina phaseolina (Tassi) Goid), and sudden death syndrome (SDS) (caused by Fusarium virguliforme O’Donnell & T. Aoki) caused the next greatest estimated yield losses, in descending order. The estimated mean economic loss due to all soybean diseases, averaged across U.S. states and Ontario from 2010 to 2014, was $60.66 USD per acre. Results from this survey will provide scientists, breeders, governments, and educators with soybean yield-loss estimates to help inform and prioritize research, policy, and educational efforts in soybean pathology and disease management.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
C. PIASECKI ◽  
M.A. RIZZARDI ◽  
J. SCHONS ◽  
A. CAVERZAN ◽  
G. CHAVARRIA

ABSTRACT: The cultivation of GR® corn prior to soybean favors the occurrence of GR® volunteer corn plants interfering in soybean crops. The interference of volunteer corn causes the soybean yield losses, and the magnitude of losses varies with the corn density. The soybean yield losses can be partially explained by the occurrence of oxidative stress, which occurs by the higher content of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2). The objective of this study was to quantify H2O2 content and the activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) on soybean as a function of interference of populations of GR® volunteer corn originated from individual plants and clumps (clumps are seven corn plants emerged at the same point) in different times, as well as to determine wheter this interference alters stress metabolism on soybean. Quantification was performed at 20, 35 and 46 days after emergence (DAE) of soybean. The mean volunteer corn populations were 0, 0.5, 1, 2, 4, 8, 10 and 12 plants or clumps m-2. The results show changes in H2O2 content and SOD, CAT and APX activity as a response to interference with volunteer corn populations and origins. The higher activity was observated for SOD. Soybean yield reduce with the increase of populations of volunteer corn originated from individual plants and clumps.


Weed Science ◽  
1981 ◽  
Vol 29 (3) ◽  
pp. 339-342 ◽  
Author(s):  
H. D. Coble ◽  
F. M. Williams ◽  
R. L. Ritter

The influence of common ragweed (Ambrosia artemisiifoliaL.) interference on soybean [Glycine max(L.) Merr. ‘Ransom’] yield was studied in the field utilizing naturally occurring weed populations. The damage-threshold population for a full-season, in-row common ragweed infestation was four weeds/10 m of row, which resulted in an 8% yield loss. Soybeans kept weed-free for 2 weeks or longer after emergence in a dry year produced normal yields, but 4 weeks of weed-free maintenance was required when adequate moisture was available early in the growing season. Soybean yield was not reduced by a natural population of common ragweed if the period of interference was limited to 6 weeks or less after crop emergence. By 8 weeks after emergence, common ragweed height averaged 25 cm taller than soybeans, and the weed canopy intercepted 24% of the photosynthetically active radiation.


2017 ◽  
Vol 31 (1) ◽  
pp. 148-154 ◽  
Author(s):  
Nader Soltani ◽  
J. Anita Dille ◽  
Ian C. Burke ◽  
Wesley J. Everman ◽  
Mark J. VanGessel ◽  
...  

Weeds are one of the most significant, and controllable, threats to crop production in North America. Monetary losses because of reduced soybean yield and decreased quality because of weed interference, as well as costs of controlling weeds, have a significant economic impact on net returns to producers. Previous Weed Science Society of America (WSSA) Weed Loss Committee reports, as chaired by Chandler (1984) and Bridges (1992), provided snapshots of the comparative crop yield losses because of weeds across geographic regions and crops within these regions after the implementation of weed control tactics. This manuscript is a second report from the current WSSA Weed Loss Committee on crop yield losses because of weeds, specifically in soybean. Yield loss estimates were determined from comparative observations of soybean yields between the weedy control and plots with greater than 95% weed control in studies conducted from 2007 to 2013. Researchers from each US state and Canadian province provided at least three and up to ten individual comparisons for each year, which were then averaged within a year, and then averaged over the seven years. These percent yield loss values were used to determine total soybean yield loss in t ha−1and bu acre−1based on average soybean yields for each state or province as well as current commodity prices for a given year as summarized by USDA-NASS (2014) and Statistics Canada (2015). Averaged across 2007 to 2013, weed interference in soybean caused a 52.1% yield loss. Based on 2012 census data in the US and Canada soybean was grown on 30,798,512 and 1,679,203 hectares with production of 80 million and 5 million tonnes, respectively. Using an average soybean price across 2007 to 2013 of US $389.81 t−1($10.61 bu−1), farm gate value would be reduced by US $16.2 billion in the US and $1.0 billion in Canada annually if no weed management tactics were employed.


Weed Science ◽  
1995 ◽  
Vol 43 (3) ◽  
pp. 375-380 ◽  
Author(s):  
David Chikoye ◽  
Stephan F. Weise ◽  
Clarence J. Swanton

Common ragweed is a major problem in white bean production systems in Ontario. The influence of time of emergence and density of common ragweed on white bean growth and seed yield was examined in Ontario at Elora in 1990, and at Woodstock and Staffa in 1991 and 1992. Ragweed emerged with white bean seedlings (VE) and at the second trifoliate stage of white bean (V3). Time of ragweed emergence and weed density affected white bean yield at all locations. When 1.5 ragweed seedlings m−1of row emerged at the VE stage of crop growth 10 to 22% seed yield loss occurred. Yield losses of 4 to 9% occurred when 1.5 ragweed seedlings m−1of row emerged at the V3 crop stage. Yield loss parameter estimates, i.e., the predicted weed-free crop yield (YWF) and the maximum yield loss (A), varied among locations and with time of ragweed emergence, whereas the parameter for yield loss at low weed density (I) was more consistent across all locations and times of weed emergence. Although I values were relatively consistent across locations and times of ragweed emergence, the standard errors associated with each estimate were large. White bean leaf area index, above-ground biomass and pod number m−2were affected most by ragweed interference. White bean density, number of seeds per pod, and seed weight per plant were not affected by ragweed interference. Ragweed emerging at VE and V3 produced a maximum of 6000 and 1000 seeds m−2, respectively. Time of ragweed emergence may be more important than weed density when evaluating weed control options.


Sign in / Sign up

Export Citation Format

Share Document