Response of dry beans to tiafenacil applied preemergence

2021 ◽  
pp. 1-11
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Abstract Tiafenacil is a new non-selective, protoporphyrinogen IX oxidase (PPO) – inhibiting pyrimidinedione herbicide that is under consideration for registration in corn, soybean, wheat, cotton, and other crops to control grass and broadleaf weeds prior to crop emergence. The sensitivity of dry beans to tiafenacil is not known. Four field experiments were completed at Exeter and Ridgetown, ON, Canada during the 2019 and 2020 growing seasons to determine the sensitivity of azuki, kidney, small red, and white beans to tiafenacil applied preemergence (PRE) at 12.5, 25, 50, and 100 g ai ha−1. Tiafenacil at 100 g ai ha−1 caused 5% or less injury to azuki, kidney, small red and white beans, and 0 to 3% injury in azuki bean, 1-5% injury in kidney bean, 1-4% injury in small red bean, and 1 to 4% injury in white bean. Tiafenacil applied PRE at 12.5, 25, 50, and 100 g ai ha−1 caused up to 1, 4, 4, and 5% visible dry bean injury, respectively but caused no negative effect on other growth parameters measured including the final seed yield. Crop injury was generally the greatest with tiafenacil at the 100 g ai ha−1 in dry beans. Generally, kidney, small red, and white bean were more sensitive to tiafenacil than azuki bean. Dry bean injury was persistent and increased with time with the greatest injury observed 8 WAE. Tiafenacil applied PRE can be a useful addition to the current weed control strategies for grass and broadleaf weed control suppression, especially GR horseweed and amaranth species prior to bean emergence.

2018 ◽  
Vol 98 (5) ◽  
pp. 1168-1175 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

A study consisting of four field experiments was conducted over a 2-yr period (2016, 2017) near Exeter and Ridgetown, ON, to compare the tolerance of adzuki, kidney, small red, and white beans to four Group 15 herbicides including pethoxamid (1200 and 2400 g a.i. ha−1), S-metolachlor (1600 and 3200 g a.i. ha−1), dimethenamid-P (693 and 1386 g a.i. ha−1), and pyroxasulfone (100 and 200 g a.i. ha−1) applied preplant incorporated (PPI). At 1 wk after emergence (WAE), pethoxamid, S-metolachlor, dimethenamid-P, and pyroxasulfone caused as much as 22%, 17%, 38%, and 15% adzuki bean injury, respectively. The injury decreased with time; at 8 WAE, pethoxamid, S-metolachlor, dimethenamid-P, and pyroxasulfone applied PPI caused as much as 3%, 4%, 12%, and 7% adzuki bean injury, respectively. The injury was lower in other market classes of dry bean. At 1, 2, and 4 WAE, pethoxamid, S-metolachlor, dimethenamid-P, and pyroxasulfone caused as much as 4%, 2%, 4%, and 14% injury in kidney bean, 3%, 2%, 4%, and 12% injury in small red bean, and 5%, 3%, 6%, and 13% injury in white bean, respectively. However, the injury at 8 WAE was 5% or less in kidney, small red, and white beans with all Group 15 herbicides evaluated. Based on this research, pyroxasulfone was the most injurious to dry beans, it reduced plant height as much as 15% and seed yield as much as 17%. The Group 15 herbicides evaluated were more injurious to adzuki bean than kidney, small red, or white beans.


2007 ◽  
Vol 21 (1) ◽  
pp. 230-234 ◽  
Author(s):  
Peter H. Sikkema ◽  
Christy Shropshire ◽  
Nader Soltani

Three field trials were conducted over a 2-yr period (2004 and 2005) at Exeter and Ridgetown, Ontario to evaluate the tolerance of eight market classes of dry beans to KIH-485 applied PRE at 210 and 420 g ai/ha. KIH-485 PRE caused as much as 67% visual injury in small-seeded and 44% visual injury in large-seeded dry beans. KIH-485 applied PRE at 420 g/ha reduced plant height up to 47% at Ridgetown and 8% at Exeter in 2004, and reduced height of brown and white bean by 15 and 19%, respectively, but had no effect on the height of the other beans in 2005. Shoot dry weight was not affected at Exeter in 2004 but was reduced by 46% at Ridgetown in 2004 and 14% at Exeter in 2005. In 2004, seed moisture content increased by 5, 6, and 12% in black, otebo, and pinto beans, respectively. Seed yield was reduced up to 27% at Ridgetown and 11% at Exeter in 2004 but was not affected at Exeter in 2005. On the basis of this research, KIH-485 PRE causes unacceptable injury in some dry bean market classes.


1996 ◽  
Vol 76 (4) ◽  
pp. 915-919 ◽  
Author(s):  
R. E. Blackshaw ◽  
G. Saindon

A field study was conducted during 3 yr to determine the growth and yield response of Pinto, Pink Red and Great Northern dry beans to various doses of imazethapyr. Imazethapyr was applied postemergence at 0, 25, 50 75 100, 150, and 200 g ha−1 to each class of dry bean. Results indicated that these four classes of dry beans responded similarly to imazethapyr. Dry bean injury increased and yields were reduced as dose of imazethapyr increased. At the proposed use dose of 50 g ha−1, imazethapyr reduced yield by 5 to 6%. Imazethapyr at 100 g ha−1 reduced dry bean yield by 10 to 12% and delayed maturity by 3 to 4 d. Benefits of superior weed control attained with imazethapyr should be weighed against potential crop injury when growers consider using imazethapyr in their dry bean weed management programs. Key words: Herbicide injury, maturity, seed yield, seed weight


2016 ◽  
Vol 96 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Zhenyi Li ◽  
Rene Van Acker ◽  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

Six field experiments were conducted over a two-year period (2013 and 2014) to evaluate the tolerance of white bean and spectrum of weeds controlled with halosulfuron applied preplant incorporated (PPI) alone or tankmixed with trifluralin, pendimethalin, EPTC, dimethenamid-P, or S-metolachlor. Halosulfuron applied alone or in tankmix with trifluralin, pendimethalin, EPTC, dimethenamid-P, or S-metolachlor caused 2% or less visible injury 1 and 4 weeks after emergence (WAE). Halosulfuron applied PPI controlled common lamb's-quarters, wild mustard, redroot pigweed, and common ragweed greater than 90% and green foxtail less than 60% 4 and 8 WAE. Weed biomass and density followed a similar pattern. White bean yield with halosulfuron applied alone or in tankmix with the same herbicides was equivalent to the weed-free control.


2016 ◽  
Vol 30 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Zhenyi Li ◽  
Rene C. Van Acker ◽  
Darren E. Robinson ◽  
Nader Soltani ◽  
Peter H. Sikkema

White bean tolerance and weed control were examined by applying halosulfuron alone or in combination with pendimethalin, dimethenamid-P, orS-metolachlor applied PRE. All herbicides applied alone or in combination caused less than 3% visible injury 1 and 4 wk after emergence (WAE). Halosulfuron applied PRE provided greater than 95% control of common lambsquarters, wild mustard, redroot pigweed, and common ragweed and less than 55% control of green foxtail at 4 and 8 WAE. Weed density and dry weight at 8 WAE paralleled the control ratings. Dry bean yields in halosulfuron plus a soil applied grass herbicide did not differ compared to the weed-free control. Green foxtail competition with halosulfuron PRE applied alone resulted in reduced white bean yield compared to the weed-free control.


2021 ◽  
Vol 10 (3) ◽  
pp. 281-288
Author(s):  
Olufemi Aremu-Dele ◽  
Kehinde Ademola Adesanya ◽  
Bunmi Olaoluwa Olorundare ◽  
Oluwadamilola Ifedolapo Asunbo ◽  
Elizabeth Feyisayo Odeyemi

Cashew is an important economic tree crop cultivated for its wood, apple and most especially the nut. The large plant spacing involved in its cultivation encourages intercropping. Intercropping cashew during the early phase of establishment with arable and sometimes tree crops is usually practiced which serves as food security, cultural weed control and means of additional income to farmers. The aim of this study is to look into some experimented cashew intercrop and gaps in the intercrop patterns. Review of past literatures was used in discovering cashew intercrop patterns in Nigeria and some major cashew producing countries. Intercropping cashew with arable crops is more popular and profitable than with tree crop except in Sri-lanka where intercropping with coconut seems profitable than cashew sole cropping. Intercropping of cashew with arable crops, legumes and vegetables did not affect the growth of young cashew except millet, sorghum and pigeon-pea. Cashew/maize and cashew/cassava/yam had high returns respectively. Intercrop combinations with more than two crops affected the growth of cashew. Cashew/rice and cashew/plantain intercrop suppressed the growth of weeds with no negative effect on cashew growth. More concise and implementable research can be done where information on weed control, growth parameters, nutrient demands, yield and economic returns can be gotten from an experiment on the various cashew intercrop patterns as this will make the findings more adoptable by the farmers. Intercropping cashew with more than 2 crops should be discouraged.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Nader Soltani ◽  
Lynette R. Brown ◽  
Peter H. Sikkema

Six field experiments were conducted during 2015 to 2017 in Ontario, Canada, to determine the efficacy of pethoxamid applied alone, and in combination with broadleaf herbicides, for the control of annual grass and broadleaved weeds in white navy bean. Visible injury was generally minimal (0 to 8%) with herbicide treatments evaluated. Weed control was variable depending on the weed species evaluated. Pethoxamid,S-metolachlor, halosulfuron, imazethapyr, sulfentrazone, pethoxamid + halosulfuron, pethoxamid + imazethapyr, and pethoxamid + sulfentrazone controlled redroot pigweed 82 to 98%; common ragweed 19 to 93%; common lambsquarters 49 to 84%; and green foxtail 47 to 92% in white bean. Weed biomass and weed density reductions were similar to visible control ratings for herbicides evaluated. Weed interference delayed white bean maturity and reduced yield by 50% in this study. Weed interference in plots sprayed with pethoxamid,S-metolachlor, and sulfentrazone reduced white bean yield 36%. White bean yield was similar to the weed-free with other herbicides evaluated. This study concludes that there is potential for the tank-mix of pethoxamid with halosulfuron, imazethapyr, or sulfentrazone for weed control in white bean production.


Weed Science ◽  
1986 ◽  
Vol 34 (5) ◽  
pp. 738-744 ◽  
Author(s):  
Donn G. Shilling ◽  
A. Douglas Worsham ◽  
David A. Danehower

Field experiments were conducted to determine the effects of various densities of four fall-seeded small grain mulches and diphenamid (N,N-dimethyl-α-phenyl benzeneacetamide) on weed control, yield, and quality in no-till flue-cured tobacco (Nicotiana tabacumL. ‘McNair 944’). A greenhouse study investigated the effects of non-soil-incorporated mulch from the same small grains plus alfalfa (Medicago sativaL.) on various growth parameters of tobacco (‘Speight G-70’). None of the mulches used in the greenhouse study adversely affected growth of the tobacco. Mulch from rye (Secale cerealeL. ‘Abruzzi’) killed about 2 weeks before transplanting plus diphenamid provided better annual broadleaf weed control (85%) than wheat (Triticum aestivumL. ‘McNair’), barley (Hordeum vulgareL. ‘Keowee’), and no mulch. Oat (Avena sativaL. ‘Brooks’) mulch resulted in 80% broadleaf weed control. There were no differences in annual grass control (which was short lived) among mulches but control was lower in the no-mulch treatment. Rye mulch resulted in a 22% increase in the control of broadleaf weeds compared to no-mulch. Yield of the no-till tobacco did not differ among mulches and averaged 82% of that conventionally grown. The quality was not affected. The rye mulch did not affect the yield or quality of tobacco when compared to a nonmulch, noncultivated treatment. The 18% decrease in the no-till yield was apparently the result of the lack of tillage and increased weed interference and was not due to adverse effects from the rye.


2009 ◽  
Vol 23 (4) ◽  
pp. 569-573 ◽  
Author(s):  
Ozhan Boz ◽  
Derya Ogüt ◽  
Kamil Kır ◽  
M. Nedim Doğan

Field experiments were carried out during two growing seasons at Adnan Menderes University, Faculty of Agriculture, in Aydın-Turkey to evaluate the weed control efficacy of olive processing waste (OPW) in okra, faba bean, and onion. OPW was incorporated into the soil prior to seeding at 10, 20, 30, and 40 tons (t)/ha. Non-treated plots and plots treated with trifluralin in okra and pendimethalin in faba bean and onion were used for comparison. OPW suppressed common purslane, redroot pigweed, and junglerice in okra; littleseed canarygrass, annual bluegrass, wild chamomile, and shepherd's-purse in faba bean and onion. OPW was in most cases equally as effective as soil herbicides; however, 10 t/ha provided sometimes lower efficacy than herbicides. OPW had no negative effects on okra and faba bean, while onion was negatively affected by doses over 30 t/ha. Overall, OPW can be applied at 10 to 20 t/ha doses for weed control with adequate crop safety.


2000 ◽  
Vol 27 (1) ◽  
pp. 11-16 ◽  
Author(s):  
G. Wehtje ◽  
B. J. Brecke ◽  
N. R. Martin

Abstract Field experiments were conducted over two growing seasons (1995 and 1996) and at two locations (Jay, FL, and Headland, AL) to identify the most effective herbicide program for Florida beggarweed [Desmodium tortuosum (SW) D.C.] control in peanut (Arachis hypogaea L.). The most common herbicides used for Florida beggarweed control—including preemergence (PRE), early-postemergence (EPOST), mid-postemergence (MPOST) and late-postemergence (LPOST) applied treatments—were evaluated in a factorial treatment arrangement. All treatments had merit and could be assembled into programs that resulted in maximum weed control, crop yield, and net returns. However, at least two of the four treatment timings were required to reach this level. Four systems were consistently associated with the maximum statistical grouping for both yield and net returns, as well as acceptable Florida beggarweed control (> 81%). These systems were (a) paraquat + bentazon applied EPOST, followed by pyridate + 2,4-DB MPOST; (b) same as (a) only preceded by norflurazon applied PRE; (c) imazapic applied EPOST followed by pyridate + 2,4-DB MPOST; and (d) norflurazon applied PRE, followed by imazapic EPOST.


Sign in / Sign up

Export Citation Format

Share Document