Dicamba translocation in soybean and accumulation in seed

Weed Science ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 333-339
Author(s):  
Maria Leticia M. Zaccaro ◽  
Jason K. Norsworthy ◽  
Chad B. Brabham

AbstractThe dicamba-resistant cropping system was developed to be used as a tool to control multiple-resistant weed species, particularly Palmer amaranth (Amaranthus palmeri S. Watson). However, dicamba applications have resulted in off-target movement of the herbicide to susceptible neighboring vegetation, with frequent damage to non–dicamba resistant soybean [Glycine max (L.) Merr.]. Pod malformation and subsequent auxin-like injury to progeny is common when parent soybean plants are exposed to the herbicide post-flowering. Yet no publication to date has conveyed the presence of dicamba in seed. The objective of this study was to determine whether dicamba exists and at what quantities inside soybean seed following a low-dose exposure in the pod-filling stage using radiolabeled herbicide as a tracer. Non–dicamba resistant soybean plants were grown in the greenhouse until the pod-filling growth stage and then treated with 2.8 g ae ha−1 of dicamba (1/200 of the recommended rate of 560 g ae ha−1). Immediately afterward, [14C]dicamba (approximately 6.4 kBq per plant) was applied to the adaxial surface of one trifoliate leaf located in the midportion of each plant. The greatest amount of [14C]dicamba recovered was in seeds and in pods, and these plant parts accumulated 44% and 38% of the total absorbed, respectively. Chromatography results showed that the totality of the [14C]dicamba present in the soybean seeds was in the phytotoxic form, except for a single sample, in which one metabolite was detected (possibly 5-hydroxy dicamba). Precautions should be taken to avoid dicamba exposure to sensitive soybean fields, especially those dedicated to seed production, as this may result in low seed quality and symptomology on progeny plants.

2016 ◽  
Vol 3 ◽  
pp. 61
Author(s):  
R. Ibañez

The assay was conducted in Pelotas, Rio Grande do Sul-Brasil, to compare the effect of used engine oil with to paraquat (Gramoxone) applied during the physiological maturition of soybean seeds (Glicyne max (L.) Merrill), Bragg variety. The oil doses were 5.3, 8.5 and 12 l/ha. The desiccation intensity was determined and 30 pods per plot were periodically collected to follow the humidity content of the seeds, to 18%. The humidity was later reduced to 10.5 +0.5 and 2.0 kg of seeds were stored, in cotton bags,during 6 months under the environmental conditions at the Centro de Entrenamiento de Semillas of the Federal University of Pelotas. The seeds were subjected to germination, vigor and phytosanitary tests at harvest time and after 3 and 6 months of storage. Under the conditions of this trial, the doses of 12 l/ha of oil and 2 l/ha of paraquat: a) act as desiccants for soybean plants, b) favors the production of seeds with better viability and vigor after 6 months of storage and c) guarantied better sanitary seed quality after 6 months of storage.


2012 ◽  
Vol 34 (2) ◽  
pp. 225-230
Author(s):  
Elisandra Batista Zambenedetti Magnani ◽  
Elisabeth Aparecida Furtado de Mendonça ◽  
Maria Cristina de Figueiredo e Albuquerque

To study adhesion and viability of uredospores of the fungus Phakopsora pachyrhizi on soybean seeds during storage, suspension tests of those uredospores were carried out by washing seeds at each 30 days interval. Furthermore, germination and inoculation tests of uredospores on soybean plants were performed with uredospores collected from seeds of two soybean production areas, located in the municipalities "Chapada dos Guimarães" and "Tangará da Serra", State of Mato Grosso, Brazil. High levels of uredospores infestation were detected before storage [249.31 and 85.18 uredospores/100 seeds (U/100)] on seeds collected in both localities, respectively. After 30 days storage, these figures were 46.12 and 122.5 U/100; at 60 days were 14.62 and 26.62 U/100; and at 90 days were only 2.87 and 3,68 U/100, respectively; dropping to zero after 120 days storage. The percentage of germinated uredospores decreased with increasing storage periods and at 120 days germination percentage was nil. When uredospores were inoculated on soybean plants, rust symptoms were only observed for uredospores collected from freshly harvested seeds. Uredospores associated to soybean seed germinate until 90 days after storage, but are not viable after this time span. Infection of plants only occurs with inoculation of uredospores obtained from freshly harvested seeds.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 1036-1042 ◽  
Author(s):  
C. A. Bradley ◽  
G. L. Hartman ◽  
L. M. Wax ◽  
W. L. Pedersen

Different herbicides were applied to soybean plants in field plots planted to different soybean cultivars located at four locations in Illinois between 1997 and 2000. Treatments varied from hand weeded to preemergence herbicides to postemergence herbicides. Soybean seeds were harvested and evaluated for different seed quality parameters. The percentage of seeds infected with Phomopsis spp. ranged from 1 to 40%, and the percentage of seeds infected with Cercospora kikuchii was low, ranging from 0 to 4%. Herbicides had little or no effect on seed quality parameters such as percent germination and incidence of seed pathogens or on protein and oil concentrations. Soybean seed quality was affected by Phomopsis spp. in that there were significant (P ≤ 0.05) inverse correlations between Phomopsis spp. incidence and percentage seed germination. It appears that Phomopsis spp. may be a more prevalent seed pathogen than C. kikuchii for soybean fields in central to northern Illinois.


2021 ◽  
Vol 42 (6) ◽  
pp. 3135-3148
Author(s):  
Ana Paula Silva Couto ◽  
◽  
Cristian Rafael Brzezinski ◽  
Julia Abati ◽  
Ronan Carlos Colombo ◽  
...  

Soybean seed treatment contributes to the maintenance of seed quality, but the effect of commercial formulations and chemical products on the effectiveness of the electrical conductivity test based on electrolyte leaching has been frequently questioned. This study aimed to verify the interference of the chemical seed treatment of two soybean cultivars on the effectiveness of the electrical conductivity test in evaluating the vigor of freshly treated and stored seeds. The experimental design was completely randomized, consisting of seven seed treatments and two evaluation periods (0 and 60 days after storage), with four replications. The used seed treatments consisted of 1) fipronil + pyraclostrobin + thiophanate-methyl, 2) imidacloprid + thiodicarb + carbendazim + thiram, 3) abamectin + thiamethoxan + fludioxonil + mefenoxam + thiabendazole, 4) carbendazim + thiram, 5) fludioxonil + mefenoxam + thiabendazole, 6) carboxin + thiram, and 7) control (no treatment). The cultivars were BRS 360 RR and BRS 284, which were analyzed separately. Germination, accelerated aging, emergence, and electrical conductivity tests were carried out. No differences were detected between the control and chemical treatments performed on seeds of the two freshly treated soybean cultivars regarding germination, accelerated aging, and emergence tests. The germination test stood out after storage with the cultivar BRS 360 RR, showing the maintenance of germination potential for seeds treated with carbendazim + thiram and the control treatment. Therefore, the chemical treatment of soybean seeds interferes with the result of the electrical conductivity test. The electrical conductivity test is effective in segregating seed lots in terms of vigor level. The electrical conductivity test correlates with the other vigor tests used to identify the reduction in the physiological seed quality with storage.


2019 ◽  
Vol 41 (4) ◽  
pp. 506-513
Author(s):  
Rafael Vergara ◽  
Raimunda Nonata Oliveira da Silva ◽  
Arieli Paula Nadal ◽  
Gizele Ingrid Gadotti ◽  
Tiago Zanatta Aumonde ◽  
...  

Abstract: Soybean is one of the leading commodities in Brazilian agribusiness. Its cultivation is widespread in different seed-producing regions of the country, where it generates income and local development. In this context, the soybean seed is a fundamental input, as its quality strongly influences the success of the crop. However, the period after the achievement of physiological maturity is critical for the maintenance of seed quality. For that reason, this study aimed at evaluating the effect of harvest delay on both the initial and final qualities of soybean seeds. The research consisted of four harvest times, in which the initial quality was assessed through tests of first germination count, germination, accelerated aging and tetrazolium. After 120 days of storage, the germination and accelerated aging tests were once again conducted. The experiment complied with a completely randomized block design with eight replications. The rainfall was monitored during the pre-harvest phase. All variables experienced negative impacts due to the delay in harvesting. Also, the seeds suffered more damage as the delay progressed, and the variables germination and seed vigor decreased after the storage period.


2018 ◽  
Vol 10 (8) ◽  
pp. 468
Author(s):  
C. R. Bork ◽  
A. S. Almeida ◽  
C. S. Castellano ◽  
G. Zimmer ◽  
T. D. Avila ◽  
...  

The aim of this study was to analyze soybean seed physiological quality after being subjected to various mixtures of pesticides via industrial seed treatment. The experiment was performed at the seed laboratory of the company BioGrow, located at São Paulo-SP, using soybean seeds cultivar NS 6700 IPRO which were subjected to 11 different treatments. Seed treatment was carried out using a treater Momesso, model L5-K, calibrated to apply a spray volume of 0.5 L 100 kg-1 of seeds in which the volume of each treatment was adjusted using distilled water. After treatment, seeds were spread over plastic strays for drying for a period of 24 hours under environmental conditions. Once dry, seeds were packed in paper bags and stored for 0 (control), 45, 90, 135 and 180 days, under uncontrolled conditions of temperature and relative humidity, when seed physiological quality was evaluated using the following tests: germination, accelerated aging, seedling emergence, speed of emergence index and speed of emergence. Soybean industrial seed treatment before storage for up to 180 days is practicable using the mixtures of pesticides tested for storing seeds under environmental conditions. All treatments tested contribute to the maintenance of seed quality throughout storage.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Jack Dekker

The story of agriculture is the story of weed interference. After millennia of weed control we still have weeds. This situation has led many growers to observe that “the weeds always win.” One of the most important reasons weeds are so successful is their biodiversity. Biodiversity is an inevitable consequence of the struggle an individual weed species undergoes in the presence of neighbors, and by occupying a physical space in an agroecosystem. Weeds have evolved in response to cropping system practices by adapting and occupying niches left available in agroecosystems. Forces created by our cropping practices over evolutionary time have led to the weed diversity we observe today. Diversity underlies weed management in several important ways. A plant experiences diversity among its neighbors in at least five different ways. Weeds have adapted to selection in agroecosystems in several ways: (1) genetic variants within a species; (2) somatic polymorphism of plant parts; (3) success in diverse habitat microsites; (4) temporal adaptations within the community; and (5) floristic diversity of a community at higher levels than the species. Herein, weed diversity is discussed in this broader context, in terms of population behaviors that emerge as a consequence of the activities of individual components at lower levels of organization. Diversity is also discussed in terms of its implications for weed management. The potential exists to develop management strategies based on differences in weed and crop diversity. These strategies might be developed by characterization of weedy genetic and phenotypic diversity; enhancement of crop, cropping system, and agroecosystem diversity; and characterization of the spatial distribution of weed populations.


2021 ◽  
Vol 56 (2) ◽  
pp. 165-175
Author(s):  
Indrie Ambarsari ◽  
Intan Gilang Cempaka ◽  
Sigit Budi Santoso ◽  
Munir Eti Wulanjari ◽  
Muhammad Nur

This article describes an idea about improving the aged soybean seed quality through ozone application based on the consideration that the ozone's oxidative and reactive nature could preserve agriculture commodities during storage. Using soybean seeds that were naturally aged in room temperature storage (25±5°C) for two months, gaseous ozone's efficacy in rejuvenating the aged seeds was examined. The aged seeds were divided into three different packages: open container, polypropylene woven sack, and vacuum polyethylene plastic. Gaseous ozone at a capacity of 150 g/h was continuously exposed on packaged seeds during six months of storage under low temperature (18±5°C). The authors found that ozone in specific limit exposure could improve physiological characteristics and inhibit some chemical properties deterioration of aged soybean seeds during storage. Our technique allows for improvement in germination percentage and germination rate of aged seeds in the fourth month of ozone exposure (p<0.05). However, these physiological parameters decreased significantly in the sixth month of ozone exposure, signing that prolonged ozone exposure would lead to adverse effects due to excessive oxidation. The result also showed that ozone storage significantly retard the elevation of moisture and free fatty acid content of aged soybean seeds. The ozone effectiveness evaluation is confirmed in all packaging conditions, but the vacuum packaging offered better preservation on almost entirely seed quality parameters during storage, except for protein. This research result provides a promising technique to restore aged seed quality and can be used for better seed provision in the seed industry.


2020 ◽  
Vol 42 ◽  
Author(s):  
Everson Reis Carvalho ◽  
Debora Kelli Rocha ◽  
Dayliane Bernardes de Andrade ◽  
Raquel Maria de Oliveira Pires ◽  
Amanda Carvalho Penido ◽  
...  

Abstract: Due to increased use of treated seeds, studies are necessary in relation to the effects of the treatments and their possible consequences on seed quality. The aim of this study was to evaluate phytotoxicity according to when phytosanitary products are applied on soybean seeds and their effect on seed physiological quality and field performance. A completely randomized experimental design was used in a 9 × 2 factorial arrangement involving 9 seed treatments (fungicides and insecticides) and two application times (60 days before sowing and at the time of sowing in the field). Moisture content was determined and tests were performed to ascertain physiological quality (germination and germination under water restriction). Root and hypocotyl length, seedling length, and vigor and uniformity indices were evaluated with the assistance of Vigor-S®. In the field, the following determinations were made: plant height at 30 and 60 days after emergence, first pod height, number of pods per plant, number of seeds per pod, and yield. Early seed treatment in the soybean crop can affect initial development of the plants, but it does not affect yield. The phytotoxicity caused by the soybean seed treatment was observed in the root length characteristic.


2015 ◽  
Vol 28 (3) ◽  
pp. 1-11
Author(s):  
ALEJANDRA MARÍA PERUZZO ◽  
ROSANNA NORA PIOLI ◽  
ADRIANA RITA SALINAS

ABSTRACT: F. graminearum is the main causal agent of Head blight in cereals in Argentina. This is a disease that develops during the host floral state. When the reproductive structures in the host are invaded, grains may be shriveled and reduced in weight, causing a decrease in yield. Physiological diagnostic techniques on seeds detect the damages produced by this fungus could be used to take decisions related to the quality of seed lots. The objective of this study was to evaluate the possible physiological damage caused by F. graminearum isolates in soybean seeds and wheat caryopsis. Seeds and caryopsis were obtained from plants exposed to fungal infection and were evaluated under two situations: artificial inoculations under greenhouse conditions and natural infection from fields of Santa Fe Province (33°43'22''S; 62°14'46''W). Seed weight, topographical tetrazolium test, standard germination test, electrical conductivity test and X-ray test were performed in soybean seeds and wheat caryopsis from each treatment. Differential behaviors of F. graminearum strains in susceptible soybean and wheat cultivars under greenhouse conditions revealed specific interactions among soybean and wheat genotypes with this fungus. F. graminearum infection in susceptible cultivars under greenhouse conditions produced a significant decrease in the physiological quality of soybean seed and wheat caryopsis. These behaviors were not detected under field conditions in the evaluated locations. All seed quality tests used in this experiment were useful to show differences in infection in soybean and wheat independently of F. graminearum infection.


Sign in / Sign up

Export Citation Format

Share Document