High-Throughput Strategy for Glycine Oxidase Biosensor Development Reveals Glycine Release from Cultured Cells

Author(s):  
Siba Moussa ◽  
Elena Rossini ◽  
Daryan Chitsaz ◽  
Loredano Pollegioni ◽  
Timothy E. Kennedy ◽  
...  
2015 ◽  
Vol 20 (9) ◽  
pp. 1178-1184 ◽  
Author(s):  
Dong Woo Lee ◽  
Moo-Yeal Lee ◽  
Bosung Ku ◽  
Do-Hyun Nam

Area-based and intensity-based 3D cell viability measurement methods are compared in high-throughput screening in order to analyze their effects on the assay results (doubling time and IC50) and their repeatability. Many other 3D cell-based high-throughput screening platforms had been previously introduced, but these had not clearly addressed the effects of the two methods on the assay results and assay repeatability. In this study, the optimal way to analyze 3D cultured cells is achieved by comparing day-to-day data of doubling times and IC50 values obtained from the two methods. In experiments, the U251 cell line is grown in chips. The doubling time, based on the area of the 3D cells, was 27.8 ± 1.8 h (standard deviation: 6.6%) and 27.8 ± 3.8 h (standard deviation: 13.7%) based on the intensity of the 3D cells. The doubling time calculated by area shows a smaller standard deviation than one calculated by intensity. IC50 values calculated by both methods are very similar. The standard deviations of IC50 values for the two methods were within ±3-fold. The IC50 variations of the 12 compounds were similar regardless of the viability measurement methods and were highly related to the shape of the dose–response curves.


2018 ◽  
Author(s):  
Jason Lee ◽  
Miguel Ochoa ◽  
Pablo Maceda ◽  
Eun Yoon ◽  
Lara Samarneh ◽  
...  

Transgenic methods for direct reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) are effective in cell culture systems but ultimately limit the utility of iPSCs due to concerns of mutagenesis and tumor formation. Recent studies have suggested that some transgenes can be eliminated by using small molecules as an alternative to transgenic methods of iPSC generation. We developed a high throughput platform for applying complex dynamic mechanical forces to cultured cells. Using this system, we screened for optimized conditions to stimulate the activation of Oct-4 and other transcription factors to prime the development of pluripotency in mouse fibroblasts. Using high throughput mechanobiological screening assays, we identified small molecules that can synergistically enhance the priming of pluripotency of mouse fibroblasts in combination with mechanical loading. Taken together, our findings demonstrate the ability of mechanical forces to induce reprograming factors and support that biophysical conditioning can act cooperatively with small molecules to priming the induction pluripotency in somatic cells.


Viruses ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 655 ◽  
Author(s):  
Yíngyún Caì ◽  
Masaharu Iwasaki ◽  
Brett Beitzel ◽  
Shuīqìng Yú ◽  
Elena Postnikova ◽  
...  

Lassa virus (LASV), a mammarenavirus, infects an estimated 100,000–300,000 individuals yearly in western Africa and frequently causes lethal disease. Currently, no LASV-specific antivirals or vaccines are commercially available for prevention or treatment of Lassa fever, the disease caused by LASV. The development of medical countermeasure screening platforms is a crucial step to yield licensable products. Using reverse genetics, we generated a recombinant wild-type LASV (rLASV-WT) and a modified version thereof encoding a cleavable green fluorescent protein (GFP) as a reporter for rapid and quantitative detection of infection (rLASV-GFP). Both rLASV-WT and wild-type LASV exhibited similar growth kinetics in cultured cells, whereas growth of rLASV-GFP was slightly impaired. GFP reporter expression by rLASV-GFP remained stable over several serial passages in Vero cells. Using two well-characterized broad-spectrum antivirals known to inhibit LASV infection, favipiravir and ribavirin, we demonstrate that rLASV-GFP is a suitable screening tool for the identification of LASV infection inhibitors. Building on these findings, we established a rLASV-GFP-based high-throughput drug discovery screen and an rLASV-GFP-based antibody neutralization assay. Both platforms, now available as a standard tool at the IRF-Frederick (an international resource), will accelerate anti-LASV medical countermeasure discovery and reduce costs of antiviral screens in maximum containment laboratories.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S97-S97
Author(s):  
Amin Haghani ◽  
Hans M Dalton ◽  
Nikoo Safi ◽  
Farimah Shirmohammadi ◽  
Constantinos Sioutas ◽  
...  

Abstract Air pollution (AirPoll) is among the leading human mortality risk factors and yet little is known about the molecular mechanisms of this global environmental toxin. Our recent studies using mouse models even showed genetic variation and sex can alter biological responses to air pollution. To expand genetic studies of AirPoll toxicity throughout the lifespan, we introduced Caenorhabditis elegans as a new AirPoll exposure model which has a short lifespan, high throughput capabilities and shared longevity pathways with mammals. Acute exposure of C. elegans to airborne nanosized AirPoll matter (nPM) caused similar gene expression changes to our prior findings in cell culture and mouse models. Initial C. elegans responses to nPM included antioxidant, inflammatory and Alzheimer homolog genes. The magnitude of changes was dependent on the developmental stage of the worms. Even short term exposure of C. elegans to nPM altered developmental and lifespan hormetic effects, with pathways that included skn-1/Nrf family antioxidant responses. We propose C. elegans as a new and complementary model for mouse and cultured cells to study AirPoll across the lifespan. Future chronic nPM exposure and high throughput genetic screening of C. elegans can identify other major regulators of the developmental and lifespan effects of air pollution. This work was supported by grants R01AG051521 (CEF); R21AG05020 (CEF); Cure Alzheimer’s Fund (CEF); R01GM109028 (SPC), F31AG051382 (HMD) and T32AG000037 (HMD), T32AG052374 (AH).


Author(s):  
Xi Long ◽  
W. Louis Cleveland ◽  
Y. Lawrence Yao

Recent progress in the development of methods for molecular genetic analysis (e.g. RT-PCR, microarrays) has brought sensitivities to the level where single cells can be analyzed [1]. To carry out single-cell-level assays on significant numbers of cells, high throughput robotic systems are needed. These systems require identification of cultured cells (often in bright field images) for micromanipulation and subsequent molecular analysis. Given the variability of cell size and morphology, the presence of “trash,” as well as variations in microscope parameters, such as focus and illumination, identification of cultured cells in bright field images is a difficult task that, traditionally, is done by an experienced human observer. However, the use of human observers represents a severe impediment to the development of high throughput robotic systems. Therefore, there is a major need for algorithms that permit automatic recognition of cells in bright field images.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jason Lee ◽  
Miguel Armenta Ochoa ◽  
Pablo Maceda ◽  
Eun Yoon ◽  
Lara Samarneh ◽  
...  

Abstract Mechanical forces are important in the regulation of physiological homeostasis and the development of disease. The application of mechanical forces to cultured cells is often performed using specialized systems that lack the flexibility and throughput of other biological techniques. In this study, we developed a high throughput platform for applying complex dynamic mechanical forces to cultured cells. We validated the system for its ability to accurately apply parallel mechanical stretch in a 96 well plate format in 576 well simultaneously. Using this system, we screened for optimized conditions to stimulate increases in Oct-4 and other transcription factor expression in mouse fibroblasts. Using high throughput mechanobiological screening assays, we identified small molecules that can synergistically enhance the increase in reprograming-related gene expression in mouse fibroblasts when combined with mechanical loading. Taken together, our findings demonstrate a new powerful tool for investigating the mechanobiological mechanisms of disease and performing drug screening in the presence of applied mechanical load.


2021 ◽  
Author(s):  
Chenxu Zhu ◽  
Yanxiao Zhang ◽  
Yang Eric Li ◽  
Jacinta Lucero ◽  
M. Margarita Behrens ◽  
...  

Abstract We describe here Paired-Tag, a high-throughput multi-omics method for joint profiling of histone modifications and gene expressions in single cells. The assay is based on a combinatorial barcoding indexing strategy that does not require special instruments. It can be performed with nuclei extracted from cultured cells or frozen tissues, in standard molecular biology laboratories.


Biomolecules ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 42 ◽  
Author(s):  
Aike Jeucken ◽  
Jos Brouwers

High-throughput screening of biologically active substances in cell cultures remains challenging despite great progress in contemporary lipidomic techniques. These experiments generate large amounts of data that are translated into lipid fingerprints. The subsequent visualization of lipidomic changes is key to meaningful interpretation of experimental results. As a demonstration of a rapid and versatile pipeline for lipidomic analysis, we cultured HeLa cells in 96-well format for four days in the presence or absence of various inhibitors of lipid metabolic pathways. Visualization of the data by principle component analysis revealed a high reproducibility of the method, as well as drug specific changes to the lipidome. Construction of heatmaps and networks revealed the similarities and differences between the effects of different drugs at the lipid species level. Clusters of related lipid species that might represent distinct membrane domains emerged after correlation analysis of the complete dataset. Taken together, we present a lipidomic platform for high-throughput lipidomic analysis of cultured cell lines.


1995 ◽  
Vol 308 (3) ◽  
pp. 761-767 ◽  
Author(s):  
H Bismut ◽  
M Caron ◽  
C Coudray-Lucas ◽  
J Capeau

The coupling of glycolysis to serine and glycine metabolism was studied in fast-growing Zajdela hepatoma cultured cells. During the exponential phase of growth, occurring between 12 and 72 h, cells exhibited a decreased glycogen content together with a high glycolytic activity. Glycogen labelling, evaluated by 1 h-pulse experiments with [U-14C]glucose (5.5 mM), was minimal during the first 48 h and increased 2.5-fold at 72 h and 8-fold at 96 h, at which times it was also stimulated 2-fold by 10 nM insulin. [U-14C]Glucose carbons were incorporated into nucleic acid bases, with maximal incorporation at 72 h, the rate of nucleotide base labelling exceeding that of glycogen during the first 2 days of culture. Incubation of the cells with [U-14C]glucose resulted in the release into the medium of 14C-labelled glycine, the first intermediate formed on the route from serine to DNA. The rate of release per cell decreased as a function of cell growth, concomitantly with an increased rate of glucose carbon incorporation into nucleotide bases. The latter implied the intermediary formation of amino acids since the transaminase inhibitor cycloserine (10 mM), which totally inhibited [14C]glycine release, decreased by 65% nucleotide labelling from [U-14C]glucose. A dose-dependent inhibition by serine of the rate of [U-14C]glucose carbon incorporation into nucleotide bases was observed, which was maximal at 5 mM serine. These metabolic flux measurements indicate that glucose can be used as a precursor of nucleic acid synthesis. These results strongly suggest that this process is to a large extent mediated by a serine/glycine-biosynthesis-mediated pathway, and reinforce the hypothesis that glycolysis contributes to enhancing the provision of precursors required for cell proliferation.


Sign in / Sign up

Export Citation Format

Share Document