Enhanced Solubility, Dissolution, and Permeability of Abacavir by Salt and Cocrystal Formation

Author(s):  
Xu Ji ◽  
Di Wu ◽  
Chang Li ◽  
Jiulong Li ◽  
Qin Sun ◽  
...  
Keyword(s):  
2019 ◽  
Vol 9 (1) ◽  
pp. 21-28
Author(s):  
Nisha Sharma ◽  
Shashikiran Misra

Background and Objectives: Dermatophytosis (topical fungal infection) is the 4th common disease in the last decade, affecting 20-25% world’s population. Patients of AIDS, cancer, old age senescence, diabetes, cystic fibrosis become more vulnerable to dermatophytosis. The conventional topical dosage proves effective as prophylactic in preliminary stage. In the advanced stage, the therapeutics interacts with healthy tissues before reaching the pathogen site, showing undesirable effects, thus resulting in pitiable patient compliance. The youngest carbon nano-trope “Graphene” is recently used to manipulate bioactive agents for therapeutic purposes. Here, we explore graphene via smart engineering by virtue of high surface area and high payload for therapeutics and developed graphene–ketoconazole nanohybrid (Gn-keto) for potent efficacy towards dermatophytes in a controlled manner. </P><P> Methods: Polymethacrylate derivative Eudragit (ERL100 and ERS 100) microspheres embedded with keto and Gn-keto nanohybrid were formulated and characterized through FTIR, TGA, and SEM. In vitro drug release and antifungal activity of formulated Gn-keto microspheres were assessed for controlled release and better efficacy against selected dermatophytes. </P><P> Results: Presence of numerous pores within the surface of ERL100 microspheres advocated enhanced solubility and diffusion at the site of action. Controlled diffusion across the dialysis membrane was observed with ERS100 microspheres owing to the nonporous surface and poor permeability. Antifungal activity against T. rubrum and M. canis using microdilution method focused on a preeminent activity (99.785 % growth inhibition) of developed nanohybrid loaded microspheres as compared to 80.876% of keto loaded microspheres for T. rubrum. The culture of M. canis was found to be less susceptible to formulated microspheres. Conclusion: Synergistic antifungal activity was achieved by nanohybrid Gn-Keto loaded microspheres against selected topical fungal infections suggesting a vital role of graphene towards fungi.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaozhi Xu ◽  
Jiajie Wang ◽  
Awu Zhou ◽  
Siyuan Dong ◽  
Kaiqiang Shi ◽  
...  

AbstractMembrane-based gas separation exhibits many advantages over other conventional techniques; however, the construction of membranes with simultaneous high selectivity and permeability remains a major challenge. Herein, (LDH/FAS)n-PDMS hybrid membranes, containing two-dimensional sub-nanometre channels were fabricated via self-assembly of unilamellar layered double hydroxide (LDH) nanosheets and formamidine sulfinic acid (FAS), followed by spray-coating with a poly(dimethylsiloxane) (PDMS) layer. A CO2 transmission rate for (LDH/FAS)25-PDMS of 7748 GPU together with CO2 selectivity factors (SF) for SF(CO2/H2), SF(CO2/N2) and SF(CO2/CH4) mixtures as high as 43, 86 and 62 respectively are observed. The CO2 permselectivity outperforms most reported systems and is higher than the Robeson or Freeman upper bound limits. These (LDH/FAS)n-PDMS membranes are both thermally and mechanically robust maintaining their highly selective CO2 separation performance during long-term operational testing. We believe this highly-efficient CO2 separation performance is based on the synergy of enhanced solubility, diffusivity and chemical affinity for CO2 in the sub-nanometre channels.


2021 ◽  
Vol 6 (28) ◽  
pp. 7040-7048
Author(s):  
Sofiya J. Shaikh ◽  
Hemil S. Patel ◽  
Debes Ray ◽  
Vinod K. Aswal ◽  
Sushmita Singh ◽  
...  

2012 ◽  
Vol 4 (2) ◽  
pp. 58-62
Author(s):  
Aparajita Malakar ◽  
Bishwajit Bokshi ◽  
Utpal Kumar Karmakar

The aim of the present study was to increase the solubility of a poorly water soluble BCS class II drug, valsartan. Liquisolid technology and solid dispersion by kneading method were techniques used to improve the solubility of the drug by using non-volatile solvents and some hydrophilic carriers. Liquisolid compacts were prepared by dissolving the drug in suitable non volatile solvents. The various non volatile solvents used were PG, PEG, and glycerine. The carrier coating materials play an important role in improving the solubility of the drug. The dissolution rate of the drug was increased by using propylene glycol as non-volatile solvent at 20:1 ratio of carrier to coating material. Solid dispersion by kneading method were another attempt to improve solubility the various carrier materials used were PVP K 30, PEG 6000 and mannitol, these carriers are used in various ratios to improve its solubility. The dissolution rate of drug using solid dispersion kneading method with mannitol was increased at 1:3 ratio. The DSC and FTIR studies revealed no drug excipients interactions, whereas XRD revealed the reduced crystalinity of drug, which showed enhanced solubility. From the results it was concluded that the liquisolid compacts enhanced the solubility of valsartan in comparison to traditional solid dispersion method.DOI: http://dx.doi.org/10.3329/sjps.v4i2.10441  S. J. Pharm. Sci. 4(2) 2011: 58-62


2017 ◽  
Vol 12 (10) ◽  
pp. 1075-1086 ◽  
Author(s):  
Victor A. Brotsman ◽  
Vitaliy A. Ioutsi ◽  
Alexey V. Rybalchenko ◽  
Vitaliy Yu. Markov ◽  
Nikita M. Belov ◽  
...  

2010 ◽  
Vol 33 (3) ◽  
pp. 417-426 ◽  
Author(s):  
Jeoung Hee Yoo ◽  
Srinivasan Shanmugam ◽  
Pritam Thapa ◽  
Eung-Seok Lee ◽  
Prabagar Balakrishnan ◽  
...  

ChemSusChem ◽  
2017 ◽  
Vol 10 (14) ◽  
pp. 2869-2874 ◽  
Author(s):  
Ruina Dai ◽  
Yangyang Wang ◽  
Jie Wang ◽  
Xianyu Deng

2007 ◽  
Vol 30 (6) ◽  
pp. 1171-1176 ◽  
Author(s):  
Krishna Hari Bhandari ◽  
Madhuri Newa ◽  
Jung Ae Kim ◽  
Bong Kyu Yoo ◽  
Jong Soo Woo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document