Enhanced H2 Production from Municipal Solid Waste Gasification Using Ni–CaO–TiO2 Bifunctional Catalyst Prepared by dc Arc Plasma Melting

2019 ◽  
Vol 58 (29) ◽  
pp. 13408-13419 ◽  
Author(s):  
Muhammad Irfan ◽  
Aimin Li ◽  
Lei Zhang ◽  
Muhammad Javid ◽  
Mengya Wang ◽  
...  
2010 ◽  
Vol 181 (1-3) ◽  
pp. 580-585 ◽  
Author(s):  
Peng Zhao ◽  
Guohua Ni ◽  
Yiman Jiang ◽  
Longwei Chen ◽  
Mingzhou Chen ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Fadilla Noor Rahma ◽  
Cholila Tamzysi ◽  
Arif Hidayat ◽  
Muflih Arisa Adnan

Integration of gasification with CO2 capture using CaO sorbent is proposed as an alternative treatment to convert municipal solid waste (MSW) into energy. Aspen Plus process simulator was employed to study the process. Two models were built to represent the non-sorbent and the sorbent-enabled MSW gasification. The model validation against available experimental data shows high accuracy of the simulation result. The effect of CO2 capture using CaO sorbent on the syngas composition and lower heating value (LHV) was observed by comparing the two models, and sensitivity analysis was performed on both models. Several process parameters affecting the syngas composition and LHV were investigated, including CaO/MSW ratio, temperature, equivalence ratio, and steam/MSW ratio. The addition of CaO sorbent for CO2 capture was found to successfully reduce the CO2 content in the syngas, increase the H2 composition, and improve the syngas LHV at the temperature below 750 oC. The maximum H2 composition of 56.67% was obtained from the sorbent-enabled gasification. It was found that increasing equivalence ratio leads to a higher H2 concentration and syngas LHV. Raising steam/MSW ratio also increases the H2 production, but also reduces the LHV of the syngas. Observation of the temperature effect found the highest H2 production at 650 oC for both non-sorbent and sorbent-enabled gasification. 


Fuel ◽  
2021 ◽  
Vol 289 ◽  
pp. 119903
Author(s):  
Navid Kardani ◽  
Annan Zhou ◽  
Majidreza Nazem ◽  
Xiaoshan Lin

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 84 ◽  
Author(s):  
Qinyang Gu ◽  
Wei Wu ◽  
Baosheng Jin ◽  
Zheng Zhou

Municipal solid waste (MSW) gasification could be a novel method that shows the various advantages over traditional MSW treatments in China. Other research concluded that MSW gasification was operating by the assistant heat, and the gasification may occur under medium temperature. So, this study is aimed to investigate MSW gasification and pyrolysis behavior and analyze the syngas evolution and reaction mechanism. The MSW samples were collected in daily life and the experiments were carried out in a fixed tubular reactor below 650 °C. The effects of medium temperature and oxygen content on syngas quality were elucidated in depth. The results have shown that temperature can promote the syngas quality in the range of 550–650 °C, because the increasing temperature strengthens the reaction rate. The oxygen content should be controlled in a certain range, or oxidation reactions will be more prominent during gasification. The optimal gasification condition in this study was obtained at 650 °C and an oxygen concentration of 1.25%, the combustible gas yield and the lower heating value (LHV) of syngas of this condition were 0.296 L/g and 10.98 kJ/L, respectively. This study provides insights for MSW gasification under medium temperature, and a practical gasification system can be designed under a certain condition.


2019 ◽  
Vol 37 (6) ◽  
pp. 631-642 ◽  
Author(s):  
Ana Carolina Medina Jimenez ◽  
Reynaldo Palacios- Bereche ◽  
Silvia Nebra

In Brazil, in 2016, 196,050 tonnes day-1 of municipal solid waste (MSW) were collected, which means a waste generation of 1.035 kg per capita per day. Only 59.1% of the waste has adequate destination in sanitary landfills, whereas the remaining 40.9% has inadequate destination in controlled landfills and open dumps (ABRELPE, 2018). Among all the states in the country, the State of São Paulo has the biggest per capita generation: 2.290 kg. Today, the only waste destination practiced in the country is deposition in landfills, but other possibilities can be considered. Among thermal treatment routes, the gasification of MSW is an interesting alternative to be studied, because of its versatility and relatively low emissions. The aim of this work is to evaluate the potential of electricity generation through MSW gasification in Santo André city, Brazil, comparing three waste gasification technologies: TPS Termiska Processer AB, Carbogas and Energos. These alternatives have operated commercially for a few years, and data are available. Specific characteristics of each technology were taken into account, such as the reactor type and fuel properties. For the electricity production scheme, two energy conversion systems were assumed: an internal combustion engine and a steam power cycle. From the process parameters adopted, the results showed that Carbogas technology, coupled to internal combustion engines, presents the highest efficiency of electricity generation (30%) and also the lowest cost of electrical energy produced (US$65.22 MWh-1) when Santo André’s gate fee is applied.


Sign in / Sign up

Export Citation Format

Share Document