Metabolic Profiling and Transcriptome Analysis of Mulberry Leaves Provide Insights into Flavonoid Biosynthesis

2020 ◽  
Vol 68 (5) ◽  
pp. 1494-1504 ◽  
Author(s):  
Dong Li ◽  
Guo Chen ◽  
Bi Ma ◽  
Chengzhang Zhong ◽  
Ningjia He
Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 341
Author(s):  
Lei Zhang ◽  
Haoyun Sun ◽  
Tao Xu ◽  
Tianye Shi ◽  
Zongyun Li ◽  
...  

Eggplant is one of the most important vegetables worldwide. Prickles on the leaves, stems and fruit calyxes of eggplant may cause difficulties during cultivation, harvesting and transportation, and therefore is an undesirable agronomic trait. However, limited knowledge about molecular mechanisms of prickle morphogenesis has hindered the genetic improvement of eggplant. In this study, we performed the phenotypic characterization and transcriptome analysis on prickly and prickleless eggplant genotypes to understand prickle development at the morphological and molecular levels. Morphological analysis revealed that eggplant prickles were multicellular, lignified and layered organs. Comparative transcriptome analysis identified key pathways and hub genes involved in the cell cycle as well as flavonoid biosynthetic, photosynthetic, and hormone metabolic processes during prickle development. Interestingly, genes associated with flavonoid biosynthesis were up-regulated in developing prickles, and genes associated with photosynthesis were down-regulated in developing and matured prickles. It was also noteworthy that several development-related transcription factors such as bHLH, C2H2, MYB, TCP and WRKY were specifically down- or up-regulated in developing prickles. Furthermore, four genes were found to be differentially expressed within the Pl locus interval. This study provides new insights into the regulatory molecular mechanisms underlying prickle morphogenesis in eggplant, and the genes identified might be exploited in breeding programs to develop prickleless eggplant cultivars.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1267 ◽  
Author(s):  
Min Yang ◽  
Peina Zhou ◽  
Chun Gui ◽  
Guozheng Da ◽  
Ling Gong ◽  
...  

Ampelopsis megalophylla is an important species used in Chinese folk medicine. Flavonoids, the most important active components of plants, greatly determine the quality of A. megalophylla. However, biosynthesis of flavonoids at the molecular and genetic levels in A. megalophylla is not well understood. In this study, we performed chemical analysis and transcriptome analysis of A. megalophylla in different seasons (i.e., May, August, and October). Accumulation of flavonoids was higher in May than in the other two months. Genes involved in the flavonoid biosynthesis pathway, such as chalcone synthase, anthocyanidin synthase, flavanone 3-hydroxylase, flavonoid-3′,5′-hydroxylase, caffeoyl-CoA O-methyltransferase, dihydroflavonol 4-reductase, 4-coumarate-CoA ligase, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, flavonoid 3′-monooxygenase, shikimate O-hydroxycinnamoyltransferase, and leucoanthocyanidin reductase, were identified based on transcriptome data. Fifty ATP binding cassette (ABC) transporter, nine SNARE, forty-nine GST, and eighty-four glycosyltransferases unigenes related to flavonoid transport and biomodification were also found. Moreover, seventy-eight cytochrome P450s and multiple transcription factors (five MYB, two bHLH, and three WD40 family genes) may be associated with the regulation of the flavonoid biosynthesis process. These results provide insights into the molecular processes of flavonoid biosynthesis in A. megalophylla and offer a significant resource for the application of genetic engineering in developing varieties with improved quality.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziran Wang ◽  
Miaoyu Song ◽  
Zhe Wang ◽  
Shangwu Chen ◽  
Huiqin Ma

Abstract Background Bagging can improve the appearance of fruits and increase the food safety and commodification, it also has effects on intrinsic quality of the fruits, which was commonly reported negative changes. Fig can be regarded as a new model fruit with its relatively small genome size and long fruit season. Results In this study, widely targeted metabolomics based on HPLC MS/MS and RNA-seq of the fruit tissue of the ‘Zibao’ fig before and after bagging were analyzed to reveal the metabolites changes of the edible part of figs and the underneath gene expression network changes. A total of 771 metabolites were identified in the metabolome analysis using fig female flower tissue. Of these, 88 metabolites (including one carbohydrate, eight organic acids, seven amino acids, and two vitamins) showed significant differences in fruit tissue before and after bagging. Changes in 16 structural genes, 13 MYB transcription factors, and endogenous hormone (ABA, IAA, and GA) metabolism and signal transduction-related genes in the biosynthesis pathway of flavonoids after bagging were analyzed by transcriptome analysis. KEGG enrichment analysis also determined significant differences in flavonoid biosynthesis pathways in female flower tissue before and after bagging. Conclusions This work provided comprehensive information on the composition and abundance of metabolites in the female flower tissue of fig. The results showed that the differences in flavor components of the fruit before and after bagging could be explained by changes in the composition and abundance of carbohydrates, organic acids, amino acids, and phenolic compounds. This study provides new insights into the effects of bagging on changes in the intrinsic and appearance quality of fruits.


2021 ◽  
pp. 114713
Author(s):  
Jia-shang Li ◽  
Tao Ji ◽  
Shu-lan Su ◽  
Yue Zhu ◽  
Xing-ling Chen ◽  
...  

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 851
Author(s):  
DaoYuan Qin ◽  
GenHong Wang ◽  
ZhaoMing Dong ◽  
QingYou Xia ◽  
Ping Zhao

Metabonomics accurately monitors the precise metabolic responses to various dietary patterns. Metabolic profiling allows simultaneous measurement of various fecal metabolites whose concentrations may be affected by food intake. In this study, we analyzed the fecal metabolomes of silkworm (Bombyx mori) larvae reared on fresh mulberry leaves and artificial diets. 57 differentially expressed metabolites were identified by gas chromatography–mass spectrometry. Of these, 39 were up-regulated and 18 were downregulated in the mulberry leaf meal group. Most of the amino acids, carbohydrates and lipids associated with physical development and silk protein biosynthesis were enriched in silkworms reared on mulberry leaves. In contrast, the urea, citric acid, D-pinitol, D-(+)-cellobiose and N-acetyl glucosamine levels were relatively higher in the silkworm feeding on the artificial diets. The findings of this study help clarify the association between diet and metabolic profiling.


Sign in / Sign up

Export Citation Format

Share Document