Phonon-Fluid Coupling Enhanced Water Desalination in Flexible Two-Dimensional Porous Membranes

Nano Letters ◽  
2021 ◽  
Author(s):  
Yechan Noh ◽  
N. R. Aluru
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qun Ma ◽  
Yu Li ◽  
Rongsheng Wang ◽  
Hongquan Xu ◽  
Qiujiao Du ◽  
...  

AbstractFunction elements (FE) are vital components of nanochannel-systems for artificially regulating ion transport. Conventionally, the FE at inner wall (FEIW) of nanochannel−systems are of concern owing to their recognized effect on the compression of ionic passageways. However, their properties are inexplicit or generally presumed from the properties of the FE at outer surface (FEOS), which will bring potential errors. Here, we show that the FEOS independently regulate ion transport in a nanochannel−system without FEIW. The numerical simulations, assigned the measured parameters of FEOS to the Poisson and Nernst-Planck (PNP) equations, are well fitted with the experiments, indicating the generally explicit regulating-ion-transport accomplished by FEOS without FEIW. Meanwhile, the FEOS fulfill the key features of the pervious nanochannel systems on regulating-ion-transport in osmotic energy conversion devices and biosensors, and show advantages to (1) promote power density through concentrating FE at outer surface, bringing increase of ionic selectivity but no obvious change in internal resistance; (2) accommodate probes or targets with size beyond the diameter of nanochannels. Nanochannel-systems with only FEOS of explicit properties provide a quantitative platform for studying substrate transport phenomena through nanoconfined space, including nanopores, nanochannels, nanopipettes, porous membranes and two-dimensional channels.


Membranes ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 106 ◽  
Author(s):  
Yehia M. Manawi ◽  
Kui Wang ◽  
Viktor Kochkodan ◽  
Daniel J. Johnson ◽  
Muataz A. Atieh ◽  
...  

In this work, novel polysulphone (PS) porous membranes for water desalination, incorporated with commercial and produced carbon nanotubes (CNT), were fabricated and analyzed. It was demonstrated that changing the main characteristics of CNT (e.g., loading in the dope solutions, aspect ratio, and functionality) significantly affected the membrane properties and performance including porosity, water flux, and mechanical and surface properties. The water flux of the fabricated membranes increased considerably (up to 20 times) along with the increase in CNT loading. Conversely, yield stress and Young’s modulus of the membranes dropped with the increase in the CNT loading mainly due to porosity increase. It was shown that the elongation at fracture for PS/0.25 wt. % CNT membrane was much higher than for pristine PS membrane due to enhanced compatibility of commercial CNTs with PS matrix. More pronounced effect on membrane’s mechanical properties was observed due to compatibility of CNTs with PS matrix when compared to other factors (i.e., changes in the CNT aspect ratio). The water contact angle for PS membranes incorporated with commercial CNT sharply decreased from 73° to 53° (membrane hydrophilization) for membranes with 0.1 and 1.0 wt. % of CNTs, while for the same loading of produced CNTs the water contact angles for the membrane samples increased from 66° to 72°. The obtained results show that complex interplay of various factors such as: loading of CNT in the dope solutions, aspect ratio, and functionality of CNT. These features can be used to engineer membranes with desired properties and performance.


Fibers ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Marek Gryta

Only nonwetted porous membranes can be used in membrane distillation. The possibility of application in this process the capillary polypropylene membranes manufactured by thermally-induced phase separation was studied. The performance of a few types of membranes available commercially was presented. The resistance of the membranes to wetting was tested in the continuous process of water desalination. These studies were carried out for 1000 h without module cleaning. The presence of scaling layer on the membranes surface was confirmed by Scanning Electron Microscope observations. Both the permeate flux and distillate conductivity were almost not varied after the studied period of time, what indicates that the used membranes maintained their nonwettability, and the negative influence of scaling was limited. The role of surface porosity on the pore wetting and influence of membrane wettability on the quality of the distillate obtained were discussed.


MRS Advances ◽  
2017 ◽  
Vol 2 (29) ◽  
pp. 1571-1576
Author(s):  
Vinicius Splugues ◽  
Pedro Alves da Silva Autreto ◽  
Douglas S. Galvao

ABSTRACTThe advent of graphene created a revolution in materials science. Because of this there is a renewed interest in other carbon-based structures. Graphene is the ultimate (just one atom thick) membrane. It has been proposed that graphene can work as impermeable membrane to standard gases, such argon and helium. Graphene-like porous membranes, but presenting larger porosity and potential selectivity would have many technological applications. Biphenylene carbon (BPC), sometimes called graphenylene, is one of these structures. BPC is a porous two-dimensional (planar) allotrope carbon, with its pores resembling typical sieve cavities and/or some kind of zeolites. In this work, we have investigated the hydrogenation dynamics of BPC membranes under different conditions (hydrogenation plasma density, temperature, etc.). We have carried out an extensive study through fully atomistic molecular dynamics (MD) simulations using the reactive force field ReaxFF, as implemented in the well-known Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Our results show that the BPC hydrogenation processes exhibit very complex patterns and the formation of correlated domains (hydrogenated islands) observed in the case of graphene hydrogenation was also observed here. MD results also show that under hydrogenation BPC structure undergoes a change in its topology, the pores undergoing structural transformations and extensive hydrogenation can produce significant structural damages, with the formation of large defective areas and large structural holes, leading to structural collapse.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3412
Author(s):  
Мaksym Pogorielov ◽  
Kateryna Smyrnova ◽  
Sergiy Kyrylenko ◽  
Oleksiy Gogotsi ◽  
Veronika Zahorodna ◽  
...  

A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented.


1977 ◽  
Vol 44 (2) ◽  
pp. 213-217 ◽  
Author(s):  
Ho Chung ◽  
Shoei-sheng Chen

This paper presents an analytical method for evaluating the hydrodynamic masses of a group of circular cylinders immersed in a fluid contained in a cylinder. The analysis is based on the two-dimensional potential flow theory. The fluid coupling effect among cylinders is taken into account; self and mutual-added masses for both inner and outer cylinders are evaluated. Based on the proposed method, the free vibration of two eccentric cylinders with a fluid-filled gap is analyzed as an example.


2018 ◽  
Vol 3 (5) ◽  
pp. 1165-1171 ◽  
Author(s):  
Yanbing Yang ◽  
Xiangdong Yang ◽  
Linna Fu ◽  
Mingchu Zou ◽  
Anyuan Cao ◽  
...  

2018 ◽  
Vol 10 (22) ◽  
pp. 18778-18786 ◽  
Author(s):  
Qiang Lyu ◽  
Shuangqing Sun ◽  
Chunling Li ◽  
Songqing Hu ◽  
Li-Chiang Lin

Sign in / Sign up

Export Citation Format

Share Document