Piezoelectric-Thermal Coupling Driven Biomimetic Stick–Slip Bidirectional Rotary Actuator for Nanomanipulation

Nano Letters ◽  
2021 ◽  
Author(s):  
Zhichao Ma ◽  
Junming Xiong ◽  
Jiakai Li ◽  
Hongwei Zhao ◽  
Luquan Ren
2001 ◽  
Author(s):  
John R. Haas

Abstract This paper describes a new type of hydraulic rotary actuator specifically developed to provide precision motion control in a very large, man rated, underwater telerobotic manipulator system. The high pressure, high torque rotary actuators are hydrostatically balanced, provide continuous rotation, constant torque output, exhibit minimal “stick-slip” and zero backlash. It is believed that the combination of features and the performance exhibited by these actuators represent an improvement in actuator technology to such an extent as to make projects previously determined unfeasible, now practical. Features of particular design value are a very large diameter through bore, and a truly modular design permitting use as an integral structural member. This paper will address design rationale, operating principles, key design features, product development highlights, an astronaut trainer case study, future development and potential applications.


2012 ◽  
Vol 17 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Zbigniew Chaniecki ◽  
Krzysztof Grudzień ◽  
Tomasz Jaworski ◽  
Grzegorz Rybak ◽  
Andrzej Romanowski ◽  
...  

Abstract The paper presents results of the scale-up silo flow investigation in based on accelerometer signal analysis and Wi-Fi transmission, performed in distributed laboratory environment. Prepared, by the authors, a set of 8 accelerometers allows to measure a three-dimensional acceleration vector. The accelerometers were located outside silo, on its perimeter. The accelerometers signal changes allowed to analyze dynamic behavior of solid (vibrations/pulsations) at silo wall during discharging process. These dynamic effects are caused by stick-slip friction between the wall and the granular material. Information about the material pulsations and vibrations is crucial for monitoring the interaction between silo construction and particle during flow. Additionally such spatial position of accelerometers sensor allowed to collect information about nonsymmetrical flow inside silo.


2018 ◽  
Author(s):  
Nicolò Bontempi ◽  
Irene Vassalini ◽  
Stefano Danesi ◽  
Matteo Ferroni ◽  
Paolo Colombi ◽  
...  

<p>Here we investigate for the first time the opto-thermal behavior of SiO<sub>2</sub>/Si core/shell microbeads (Si-rex) irradiated with three common Raman laser sources (lambda=532, 633, 785 nm) under real working conditions. We obtained an experimental proof of the critical role played by bead size and aggregation in heat and light management, demonstrating that in the case of strong opto-thermal coupling the temperature can exceed that of the melting points of both core and shell components. In addition, we also show that weakly coupled beads can be utilized as stable substrates for plasmon-free SERS experiments.</p>


2020 ◽  
Vol 10 (8) ◽  
pp. 2790
Author(s):  
Wenzheng Zhuang ◽  
Chao Yang ◽  
Zhigang Wu

Hybrid corrugated sandwich (HCS) plates have become a promising candidate for novel thermal protection systems (TPS) due to their multi-functionality of load bearing and thermal protection. For hypersonic vehicles, the novel TPS that performs some structural functions is a potential method of saving weight, which is significant in reducing expensive design/manufacture cost. Considering the novel TPS exposed to severe thermal and aerodynamic environments, the mechanical stability of the HCS plates under fluid-structure-thermal coupling is crucial for preliminary design of the TPS. In this paper, an innovative layerwise finite element model of the HCS plates is presented, and coupled fluid-structure-thermal analysis is performed with a parameter study. The proposed method is validated to be accurate and efficient against commercial software simulation. Results have shown that the mechanical instability of the HCS plates can be induced by fluid-structure coupling and further accelerated by thermal effect. The influences of geometric parameters on thermal buckling and dynamic stability present opposite tendencies, indicating a tradeoff is required for the TPS design. The present analytical model and numerical results provide design guidance in the practical application of the novel TPS.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 320-328
Author(s):  
Delin Sun ◽  
Minggao Zhu

Abstract In this paper, the energy dissipation in a bolted lap joint is studied using a continuum microslip model. Five contact pressure distributions compliant with the power law are considered, and all of them have equal pretension forces. The effects of different pressure distributions on the interface stick-slip transitions and hysteretic characteristics are presented. The calculation formulation of the energy dissipation is introduced. The energy dissipation results are plotted on linear and log-log coordinates to investigate the effect of the pressure distribution on the energy distribution. It is shown that the energy dissipations of the lap joints are related to the minimum pressure in the overlapped area, the size of the contact area and the value of the power exponent. The work provides a theoretical basis for further effective use of the joint energy dissipation.


Sign in / Sign up

Export Citation Format

Share Document