Impurity Removal Leading to High-Performance CoSb3-Based Skutterudites with Synergistic Carrier Concentration Optimization and Thermal Conductivity Reduction

Author(s):  
Xu-Guang Li ◽  
Wei-Di Liu ◽  
Shuang-Ming Li ◽  
Dou Li ◽  
Hong Zhong ◽  
...  
Author(s):  
Hao Zhu ◽  
Zhou Li ◽  
Chenxi Zhao ◽  
Xingxing Li ◽  
Jinlong Yang ◽  
...  

Abstract Many layered superlattice materials intrinsically possess large Seebeck coefficient and low lattice thermal conductivity, but poor electrical conductivity because of the interlayer transport barrier for charges, which has become a stumbling block for achieving high thermoelectric performance. Herein, taking BiCuSeO superlattice as an example, it is demonstrated that efficient interlayer charge release can increase carrier concentration, thereby activating multiple Fermi pockets through Bi/Cu dual vacancies and Pb codoping. Experimental results reveal that the extrinsic charges, which are introduced by Pb and initially trapped in the charge-reservoir [Bi2O2]2+ sublayers, are effectively released into [Cu2Se2]2− sublayers via the channels bridged by Bi/Cu dual vacancies. This efficient interlayer charge release endows dual-vacancy- and Pb-codoped BiCuSeO with increased carrier concentration and electrical conductivity. Moreover, with increasing carrier concentration, the Fermi level is pushed down, activating multiple converged valence bands, which helps to maintain a relatively high Seebeck coefficient and yield an enhanced power factor. As a result, a high ZT value of ∼1.4 is achieved at 823 K in codoped Bi0.90Pb0.06Cu0.96SeO, which is superior to that of pristine BiCuSeO and solely doped samples. The present findings provide prospective insights into the exploration of high-performance thermoelectric materials and the underlying transport physics.


2018 ◽  
Vol 6 (18) ◽  
pp. 8215-8220 ◽  
Author(s):  
Mingtao Yan ◽  
Xiaojian Tan ◽  
Zhiwei Huang ◽  
Guoqiang Liu ◽  
Peng Jiang ◽  
...  

Via alloying with AgSbTe2, the thermoelectric performance of GeSe is dramatically improved by carrier concentration optimization and thermal conductivity suppression.


Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Olin C197 is a second-generation high performance alloy developed by Olin Brass. It has a strength and bend formability similar to C194 (see Alloy Digest Cu-360, September 1978), but with 25% higher electrical and thermal conductivity. High conductivity allows C197 to replace brasses and bronzes in applications where high current-carrying capability is required. Also, the strength of C197 provides higher contact forces when substituted for many lower strength coppers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion and wear resistance as well as forming and joining. Filing Code: CU-627. Producer or source: Olin Brass.


1989 ◽  
Vol 170 ◽  
Author(s):  
Benjamin S. Hsiao ◽  
J. H. Eric

AbstractTranscrystallization of semicrystalline polymers, such as PEEK, PEKK and PPS, in high performance composites has been investigated. It is found that PPDT aramid fiber and pitch-based carbon fiber induce a transcrystalline interphase in all three polymers, whereas in PAN-based carbon fiber and glass fiber systems, transcrystallization occurs only under specific circumstances. Epitaxy is used to explain the surface-induced transcrystalline interphase in the first case. In the latter case, transcrystallization is probably not due to epitaxy, but may be attributed to the thermal conductivity mismatch. Plasma treatment on the fiber surface showed a negligible effect on inducing transcrystallization, implying that surface-free energy was not important. A microdebonding test was adopted to evaluate the interfacial strength between the fiber and matrix. Our preliminary results did not reveal any effect on the fiber/matrix interfacial strength of transcrystallinity.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1564
Author(s):  
Jin Hee Kim ◽  
Song Yi Back ◽  
Jae Hyun Yun ◽  
Ho Seong Lee ◽  
Jong-Soo Rhyee

We investigated the anisotropic thermoelectric properties of the Bi2Te2.85Se0.15Ix (x = 0.0, 0.1, 0.3, 0.5 mol.%) compounds, synthesized by ball-milling and hot-press sintering. The electrical conductivities of the Bi2Te2.85Se0.15Ix were significantly improved by the increase of carrier concentration. The dominant electronic scattering mechanism was changed from the mixed (T ≤ 400 K) and ionization scattering (T ≥ 420 K) for pristine compound (x = 0.0) to the acoustic phonon scattering by the iodine doping. The Hall mobility was also enhanced with the increasing carrier concentration. The enhancement of Hall mobility was caused by the increase of the mean free path of the carrier from 10.8 to 17.7 nm by iodine doping, which was attributed to the reduction of point defects without the meaningful change of bandgap energy. From the electron diffraction patterns, a lattice distortion was observed in the iodine doped compounds. The modulation vector due to lattice distortion increased with increasing iodine concentration, indicating the shorter range lattice distortion in real space for the higher iodine concentration. The bipolar thermal conductivity was suppressed, and the effective masses were increased by iodine doping. It suggests that the iodine doping minimizes the ionization scattering giving rise to the suppression of the bipolar diffusion effect, due to the prohibition of the BiTe1 antisite defect, and induces the lattice distortion which decreases lattice thermal conductivity, resulting in the enhancement of thermoelectric performance.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe6000
Author(s):  
Lin Yang ◽  
Madeleine P. Gordon ◽  
Akanksha K. Menon ◽  
Alexandra Bruefach ◽  
Kyle Haas ◽  
...  

Organic-inorganic hybrids have recently emerged as a class of high-performing thermoelectric materials that are lightweight and mechanically flexible. However, the fundamental electrical and thermal transport in these materials has remained elusive due to the heterogeneity of bulk, polycrystalline, thin films reported thus far. Here, we systematically investigate a model hybrid comprising a single core/shell nanowire of Te-PEDOT:PSS. We show that as the nanowire diameter is reduced, the electrical conductivity increases and the thermal conductivity decreases, while the Seebeck coefficient remains nearly constant—this collectively results in a figure of merit, ZT, of 0.54 at 400 K. The origin of the decoupling of charge and heat transport lies in the fact that electrical transport occurs through the organic shell, while thermal transport is driven by the inorganic core. This study establishes design principles for high-performing thermoelectrics that leverage the unique interactions occurring at the interfaces of hybrid nanowires.


2011 ◽  
Vol 1306 ◽  
Author(s):  
Wenting Dong ◽  
Wendell Rhine ◽  
Shannon White

ABSTRACTHigh performance polyimides have been widely investigated as materials with excellent thermal, mechanical, and electronic properties due to their highly rigid structures. Aspen has developed an approach to prepare polyimide aerogels which have applications as low dielectric constant materials, separation membranes, catalyst supports and insulation materials. In this paper, we will discuss the preparation of polyimide-silica hybrid aerogel materials with good mechanical strengths and low thermal conductivities. The polyimide-silica hybrid aerogels were made by a two-step process and the materials were characterized to determine thermal conductivity and compressive strength. Results show that compressive moduli of the polyimide-silica hybrid aerogels increase dramatically with density (power law relationship). Thermal conductivity of the aerogels is dependent on the aging conditions and density, with the lowest value achieved so far being ~12 mW/m-K at ambient conditions. The relationship between aerogel density and surface area, thermal stability, porosity and morphology of the nanostructure of the polyimide-silica hybrid aerogels are also described in this paper.


Author(s):  
Chongjian Zhou ◽  
Yong Kyu Lee ◽  
Yuan Yu ◽  
Sejin Byun ◽  
Zhong-Zhen Luo ◽  
...  

AbstractThermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2–2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m–1 K–1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.


Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoyang Xiong ◽  
Yue Qin ◽  
Linhong Li ◽  
Guoyong Yang ◽  
Maohua Li ◽  
...  

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing thermal...


Sign in / Sign up

Export Citation Format

Share Document