Multifunctional Ternary Hybrid Hydrogel Sensor Prepared via the Synergistic Stabilization Effect

Author(s):  
Ruixin Tang ◽  
Qingyu Meng ◽  
Zhaosong Wang ◽  
Chengjiang Lu ◽  
Minghao Zhang ◽  
...  
2020 ◽  
Vol 20 (6) ◽  
pp. 04020050
Author(s):  
Huayang Lei ◽  
Jinfeng Lou ◽  
Xin Li ◽  
Mingjing Jiang ◽  
Cike Tu

RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 4901-4905
Author(s):  
Masaru Mukai ◽  
Mari Takahara ◽  
Akihiko Takada ◽  
Astushi Takahara

‘Imogolite’, a tubular inorganic nanotube surface, was modified with a peptide oligomer to prepare a hybrid hydrogel.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jianhua Zhang ◽  
Junfei Hu ◽  
Baoshu Chen ◽  
Tianbao Zhao ◽  
Zhipeng Gu

Abstract Wound healing dressing is increasingly needed in clinical owing to the large quantity of skin damage annually. Excessive reactive oxygen species (ROS) produced through internal or external environmental influences can lead to lipid peroxidation, protein denaturation, and even DNA damage, and ultimately have harmful effects on cells. Aiming to sufficiently contact with the wound microenvironment and scavenge ROS, superabsorbent poly (acrylic acid) and antioxidant poly (ester amide) (PAA/PEA) hybrid hydrogel has been developed to enhance wound healing. The physical and chemical properties of hybrid hydrogels were studied by Fourier-transform infrared (FTIR) absorption spectrum, compression, swelling, degradation, etc. Besides, the antioxidant properties of hybrid hydrogels can be investigated through the free radical scavenging experiment, and corresponding antioxidant indicators have been tested at the cellular level. Hybrid hydrogel scaffolds supported the proliferation of human umbilical vein endothelial cells and fibroblasts, as well as accelerated angiogenesis and skin regeneration in wounds. The healing properties of wounds in vivo were further assessed on mouse skin wounds. Results showed that PAA/PEA hybrid hydrogel scaffolds significantly accelerated the wound healing process through enhancing granulation formation and re-epithelialization. In summary, these superabsorbent and antioxidative hybrid hydrogels could be served as an excellent wound dressing for full-thickness wound healing.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 266
Author(s):  
Shaked Eliyahu ◽  
Alexandra Galitsky ◽  
Esther Ritov ◽  
Havazelet Bianco-Peled

We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young’s modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.


2020 ◽  
pp. 1-8
Author(s):  
Wei Zeng ◽  
Rong Su ◽  
Wei Zhou ◽  
Xiaoqi Yu ◽  
Yuhui Zheng
Keyword(s):  

2021 ◽  
Vol 60 (6) ◽  
pp. 5463-5471
Author(s):  
Zhenzhen Wei ◽  
Shanyu Zhu ◽  
Cui Li
Keyword(s):  

2021 ◽  
Vol 22 (2) ◽  
pp. 947
Author(s):  
Mitsuki Tsuruta ◽  
Yui Sugitani ◽  
Naoki Sugimoto ◽  
Daisuke Miyoshi

Methylated cytosine within CpG dinucleotides is a key factor for epigenetic gene regulation. It has been revealed that methylated cytosine decreases DNA backbone flexibility and increases the thermal stability of DNA. Although the molecular environment is an important factor for the structure, thermodynamics, and function of biomolecules, there are few reports on the effects of methylated cytosine under a cell-mimicking molecular environment. Here, we systematically investigated the effects of methylated cytosine on the thermodynamics of DNA duplexes under molecular crowding conditions, which is a critical difference between the molecular environment in cells and test tubes. Thermodynamic parameters quantitatively demonstrated that the methylation effect and molecular crowding effect on DNA duplexes are independent and additive, in which the degree of the stabilization is the sum of the methylation effect and molecular crowding effect. Furthermore, the effects of methylation and molecular crowding correlate with the hydration states of DNA duplexes. The stabilization effect of methylation was due to the favorable enthalpic contribution, suggesting that direct interactions of the methyl group with adjacent bases and adjacent methyl groups play a role in determining the flexibility and thermodynamics of DNA duplexes. These results are useful to predict the properties of DNA duplexes with methylation in cell-mimicking conditions.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3852
Author(s):  
Federica Re ◽  
Luciana Sartore ◽  
Elisa Borsani ◽  
Matteo Ferroni ◽  
Camilla Baratto ◽  
...  

Gelatin–dextran hydrogel scaffolds (G-PEG-Dx) were evaluated for their ability to activate the bone marrow human mesenchymal stromal cells (BM-hMSCs) towards mineralization. G-PEG-Dx1 and G-PEG-Dx2, with identical composition but different architecture, were seeded with BM-hMSCs in presence of fetal bovine serum or human platelet lysate (hPL) with or without osteogenic medium. G-PEG-Dx1, characterized by a lower degree of crosslinking and larger pores, was able to induce a better cell colonization than G-PEG-Dx2. At day 28, G-PEG-Dx2, with hPL and osteogenic factors, was more efficient than G-PEG-Dx1 in inducing mineralization. Scanning electron microscopy (SEM) and Raman spectroscopy showed that extracellular matrix produced by BM-hMSCs and calcium-positive mineralization were present along the backbone of the G-PEG-Dx2, even though it was colonized to a lesser degree by hMSCs than G-PEG-Dx1. These findings were confirmed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), detecting distinct lipidomic signatures that were associated with the different degree of scaffold mineralization. Our data show that the architecture and morphology of G-PEG-Dx2 is determinant and better than that of G-PEG-Dx1 in promoting a faster mineralization, suggesting a more favorable and active role for improving bone repair.


Sign in / Sign up

Export Citation Format

Share Document