High Porosity Supermacroporous Polystyrene Materials with Excellent Oil–Water Separation and Gas Permeability Properties

2015 ◽  
Vol 7 (12) ◽  
pp. 6745-6753 ◽  
Author(s):  
Shuzhen Yu ◽  
Hongyi Tan ◽  
Jin Wang ◽  
Xin Liu ◽  
Kebin Zhou
2019 ◽  
Vol 6 (2) ◽  
pp. 181823 ◽  
Author(s):  
Guangyu Shi ◽  
Yizhu Qian ◽  
Fengzhi Tan ◽  
Weijie Cai ◽  
Yuan Li ◽  
...  

Oil/water separation is a field of high significance as it might efficiently resolve the contamination of industrial oily wastewater and other oil/water pollution. In this paper, an environmentally-friendly hydrophobic aerogel with high porosity and low density was successfully synthesized with renewable pomelo peels (PPs) as precursors. Typically, a series of sponge aerogels (HPSA-0, HPSA-1 and HPSA-2) were facilely prepared via high-speed dispersion, freeze-drying and silanization with methyltrimethoxysilane. Indeed, the physical properties of aerogel such as density and pore diameter could be tailored by different additives (filter paper fibre and polyvinyl alcohol). Hence, their physico-chemical properties including internal morphology and chemical structure were characterized in detail by Fourier transform infrared, Brunauer–Emmett–Teller, X-ray diffraction, scanning electron microscope, Thermal gravimetric analyzer (TG) etc. Moreover, the adsorption capacity was further determined and the results revealed that the PP-based aerogels presented excellent adsorption performance for a wide range of oil products and/or organic solvents (crude oil 49.8 g g −1 , soya bean oil 62.3 g g −1 , chloroform 71.3 g g −1 etc.). The corresponding cyclic tests showed the absorption capacity decreased slightly from 94.66% to 93.82% after 10 consecutive cycles, indicating a high recyclability.


RSC Advances ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 4889-4898 ◽  
Author(s):  
Sudong Yang ◽  
Lin Chen ◽  
Lei Mu ◽  
Bin Hao ◽  
Junteng Chen ◽  
...  

Graphene foam with hierarchical structure was prepared. The developed material exhibited high porosity, hydrophobicity, excellent thermal stability, and can be for oil–water separation.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 625
Author(s):  
Qianqian Shang ◽  
Jianqiang Chen ◽  
Yun Hu ◽  
Xiaohui Yang ◽  
Lihong Hu ◽  
...  

A facile and environmental-friendly approach was developed for the preparation of the cross-linked nanocellulose aerogel through the freeze-drying process and subsequent esterification. The as-prepared aerogel had a three-dimensional cellular microstructure with ultra-low density of 6.05 mg·cm−3 and high porosity (99.61%). After modifying by chemical vapor deposition (CVD) with hexadecyltrimethoxysilane (HTMS), the nanocellulose aerogel displayed stable super-hydrophobicity and super-oleophilicity with water contact angle of 151°, and had excellent adsorption performance for various oil and organic solvents with the adsorption capacity of 77~226 g/g. Even after 30 cycles, the adsorption capacity of the nanocellulose aerogel for chloroform was as high as 170 g/g, indicating its outstanding reusability. Therefore, the superhydrophobic cross-linked nanocellulose aerogel is a promising oil adsorbent for wastewater treatment.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 637
Author(s):  
Ilya V. Korolkov ◽  
Asiya R. Narmukhamedova ◽  
Galina B. Melnikova ◽  
Indira B. Muslimova ◽  
Arman B. Yeszhanov ◽  
...  

The paper describes the separation of an oil–water emulsion by filtration using poly(ethylene terephthalate) track-etched membranes (PET TeMs) with regular pore geometry and narrow pore size distribution. PET TeMs were modified with trichloro(octyl)silane to increase their hydrophobic properties. Conditions for the modification of PET TeMs with trichloro(octyl)silane were investigated. The results of changes in the pore diameters and the contact angle depend on the concentration of trichloro(octyl)silane and the soaking time are presented. The obtained samples were characterized by FTIR, AFM, SEM-EDX and gas-permeability test. Chloroform–water and cetane–water emulsions have been used as a test liquid for oil–water separation.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 66
Author(s):  
Zhongjie Zhu ◽  
Lei Jiang ◽  
Jia Liu ◽  
Sirui He ◽  
Wei Shao

A superhydrophobic fluorinated silica functionalized chitosan (F-CS) aerogel is constructed and fabricated by a simple and sustainable method in this study in order to achieve highly efficient gravity-driven oil/water separation performance. The fluorinated silica functionalization invests the pristine hydrophilic chitosan (CS) aerogel with promising superhydrophobicity with a water contact angle of 151.9°. This novel F-CS aerogel possesses three-dimensional structure with high porosity as well as good chemical stability and mechanical compression property. Moreover, it also shows striking self-cleaning performance and great oil adsorption capacity. Most importantly, the as-prepared aerogels exhibits fast and efficient separation of oil/water mixture by the gravity driven process with high separation efficiency. These great performances render the prepared F-CS aerogel a good candidate for oil/water separation in practical industrial application.


2018 ◽  
Vol 9 ◽  
pp. 508-519 ◽  
Author(s):  
Zhaoyang Xu ◽  
Huan Zhou ◽  
Sicong Tan ◽  
Xiangdong Jiang ◽  
Weibing Wu ◽  
...  

With the worsening of the oil-product pollution problem, oil–water separation has attracted increased attention in recent years. In this study, a porous three-dimensional (3D) carbon aerogel based on cellulose nanofibers (CNFs), poly(vinyl alcohol) (PVA) and graphene oxide (GO) was synthesized by a facile and green approach. The resulting CNF/PVA/GO aerogels were synthesized through an environmentally friendly freeze-drying process and then carbonized to yield CNF/PVA/GO carbon aerogels with low density (18.41 mg cm−3), high porosity (98.98%), a water contact angle of 156° (super-hydrophobic) and high oil absorption capacity (97 times its own weight). The carbonization treatment of the CNF/PVA/GO aerogel not only improved the hydrophobic properties but also enhanced the adsorption capacity and specific surface area. Given the many good performance characteristics and the facile preparation process of carbon aerogels, these materials are viable candidates for use in oil–water separation and environmental protection.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 806 ◽  
Author(s):  
Yihao Guan ◽  
Fangqin Cheng ◽  
Zihe Pan

Oil spills and the emission of oily wastewater have triggered serious water pollution and environment problems. Effectively separating oil and water is a world-wide challenge and extensive efforts have been made to solve this issue. Interfacial super-wetting separation materials e.g., sponge, foams, and aerogels with high porosity tunable pore structures, are regarded as effective media to selectively remove oil and water. This review article reports the latest progress of polymeric three dimensional porous materials (3D-PMs) with super wettability to separate oil/water mixtures. The theories on developing super-wetting porous surfaces and the effects of wettability on oil/water separation have been discussed. The typical 3D porous structures (e.g., sponge, foam, and aerogel), commonly used polymers, and the most reported techniques involved in developing desired porous networks have been reviewed. The performances of 3D-PMs such as oil/water separation efficiency, elasticity, and mechanical stability are discussed. Additionally, the current challenges in the fabrication and long-term operation of super-wetting 3D-PMs in oil/water separation have also been introduced.


2020 ◽  
Vol 1 (4) ◽  
pp. 760-766 ◽  
Author(s):  
Pin Song ◽  
Jun Di ◽  
Haiping Chen ◽  
Sirui Zhao ◽  
Cao Wu ◽  
...  

Three-dimensional (3D) aerogels have attracted more and more attention in oil–water separation, due to their advantages of low density, high porosity, and large specific surface area.


Sign in / Sign up

Export Citation Format

Share Document