Critical Behavior in Au Nanoparticle Arrays: Implications for All-Metal Field Effect Transistors with Ultra-high Gain at Room Temperature

Author(s):  
Abhijeet Prasad ◽  
Michael Stoller ◽  
Ravi F. Saraf
2013 ◽  
Vol 28 (4) ◽  
pp. 415-421 ◽  
Author(s):  
Milic Pejovic

The gamma-ray irradiation sensitivity to radiation dose range from 0.5 Gy to 5 Gy and post-irradiation annealing at room and elevated temperatures have been studied for p-channel metal-oxide-semiconductor field effect transistors (also known as radiation sensitive field effect transistors or pMOS dosimeters) with gate oxide thicknesses of 400 nm and 1 mm. The gate biases during the irradiation were 0 and 5 V and 5 V during the annealing. The radiation and the post-irradiation sensitivity were followed by measuring the threshold voltage shift, which was determined by using transfer characteristics in saturation and reader circuit characteristics. The dependence of threshold voltage shift DVT on absorbed radiation dose D and annealing time was assessed. The results show that there is a linear dependence between DVT and D during irradiation, so that the sensitivity can be defined as DVT/D for the investigated dose interval. The annealing of irradiated metal-oxide-semiconductor field effect transistors at different temperatures ranging from room temperature up to 150?C was performed to monitor the dosimetric information loss. The results indicated that the dosimeters information is saved up to 600 hours at room temperature, whereas the annealing at 150?C leads to the complete loss of dosimetric information in the same period of time. The mechanisms responsible for the threshold voltage shift during the irradiation and the later annealing have been discussed also.


2015 ◽  
Vol 10 (3) ◽  
pp. 227-231 ◽  
Author(s):  
Li Tao ◽  
Eugenio Cinquanta ◽  
Daniele Chiappe ◽  
Carlo Grazianetti ◽  
Marco Fanciulli ◽  
...  

2017 ◽  
Vol 48 ◽  
pp. 68-76 ◽  
Author(s):  
Zhiqi Song ◽  
Guoming Liu ◽  
Qingxin Tang ◽  
Xiaoli Zhao ◽  
Yanhong Tong ◽  
...  

2016 ◽  
Vol 858 ◽  
pp. 917-920 ◽  
Author(s):  
Andreas Hürner ◽  
Heinz Mitlehner ◽  
Tobias Erlbacher ◽  
Anton J. Bauer ◽  
Lothar Frey

In this study, the potential of forward conduction loss reduction of Bipolar-Injection Field-Effect-Transistors (SiC-p-BIFET) with an intended blocking voltage of 10kV by adjusting the doping concentration in the channel-region is analyzed. For the optimization of the SiC-p-BIFET, numerical simulations were carried out. Regarding a desired turn-off voltage of approximately 25V, the optimum doping concentration in the channel-region was found to be 1.4x1017cm-3. Based on these results, SiC-p-BIFETs were fabricated and electrically characterized in the temperature range from 25°C up to 175°C. In this study, the differential on-resistance was found to be 110mΩcm2 for a temperature of 25°C and 55mΩcm2 for a temperature of 175°C. In comparison to our former results, a reduction of the differential on-resistance of about 310mΩcm2 at room temperature is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document