Rational Design and Hierarchical Assembly of a Genetically Engineered Resilin–Silk Copolymer Results in Stiff Hydrogels

2017 ◽  
Vol 3 (8) ◽  
pp. 1576-1585 ◽  
Author(s):  
Sheng-Chen Huang ◽  
Zhi-Gang Qian ◽  
Ao-Huan Dan ◽  
Xiao Hu ◽  
Ming-Liang Zhou ◽  
...  
2013 ◽  
Vol 41 (5) ◽  
pp. 1159-1165 ◽  
Author(s):  
Shiksha Mantri ◽  
K. Tanuj Sapra

Realization of a functional artificial cell, the so-called protocell, is a major challenge posed by synthetic biology. A subsequent goal is to use the protocellular units for the bottom-up assembly of prototissues. There is, however, a looming chasm in our knowledge between protocells and prototissues. In the present paper, we give a brief overview of the work on protocells to date, followed by a discussion on the rational design of key structural elements specific to linking two protocellular bilayers. We propose that designing synthetic parts capable of simultaneous insertion into two bilayers may be crucial in the hierarchical assembly of protocells into a functional prototissue.


Science ◽  
2018 ◽  
Vol 362 (6416) ◽  
pp. 813-816 ◽  
Author(s):  
Junling Guo ◽  
Miguel Suástegui ◽  
Kelsey K. Sakimoto ◽  
Vanessa M. Moody ◽  
Gao Xiao ◽  
...  

Inorganic-biological hybrid systems have potential to be sustainable, efficient, and versatile chemical synthesis platforms by integrating the light-harvesting properties of semiconductors with the synthetic potential of biological cells. We have developed a modular bioinorganic hybrid platform that consists of highly efficient light-harvesting indium phosphide nanoparticles and genetically engineered Saccharomyces cerevisiae, a workhorse microorganism in biomanufacturing. The yeast harvests photogenerated electrons from the illuminated nanoparticles and uses them for the cytosolic regeneration of redox cofactors. This process enables the decoupling of biosynthesis and cofactor regeneration, facilitating a carbon- and energy-efficient production of the metabolite shikimic acid, a common precursor for several drugs and fine chemicals. Our work provides a platform for the rational design of biohybrids for efficient biomanufacturing processes with higher complexity and functionality.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2879 ◽  
Author(s):  
Lucas Ferreira Ribeiro ◽  
Vanesa Amarelle ◽  
Luana de Fátima Alves ◽  
Guilherme Marcelino Viana de Siqueira ◽  
Gabriel Lencioni Lovate ◽  
...  

Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation.


2021 ◽  
Author(s):  
Mohamad Abedi ◽  
Michael Yao ◽  
David R. Mittelstein ◽  
Avinoam Bar-Zion ◽  
Margaret Swift ◽  
...  

Rapid advances in synthetic biology are driving the development of genetically engineered microbes as therapeutic agents for a multitude of human diseases, including cancer. In particular, the immunosuppressive microenvironment of solid tumors creates a favorable niche for systemically administered bacteria to engraft in the tumor and release therapeutic payloads. However, such payloads can be harmful if released in healthy tissues where the bacteria also engraft in smaller numbers. To address this limitation, we engineer therapeutic bacteria to be controlled by focused ultrasound, a form of energy that can be applied noninvasively to specific anatomical sites such as solid tumors. This control is provided by a temperature-actuated genetic state switch that produces lasting therapeutic output in response to briefly applied focused ultrasound hyperthermia. Using a combination of rational design and high-throughput screening we optimized the switching circuits of engineered cells and connected their activity to the release of immune checkpoint inhibitors. In a clinically relevant cancer model, ultrasound-activated therapeutic microbes successfully turned on in situ and induced a marked suppression of tumor growth. This technology provides a critical tool for the spatiotemporal targeting of potent bacterial therapeutics in a variety of biological and clinical scenarios.


2021 ◽  
Vol 1 (2) ◽  
pp. 79-89
Author(s):  
Eric D. Eisenmann ◽  
Qiang Fu ◽  
Elizabeth M. Muhowski ◽  
Yan Jin ◽  
Muhammad Erfan Uddin ◽  
...  

Ibrutinib (Imbruvica; PCI-32765) is an orally administered inhibitor of Bruton's tyrosine kinase that has transformed the treatment of B-cell malignancies. However, ibrutinib has very low oral bioavailability that contributes to significant variability in systemic exposure between patients, and this has the potential to affect both efficacy and toxicity. We hypothesized that the oral bioavailability of ibrutinib is limited by CYP3A isoform–mediated metabolism, and that this pathway can be inhibited to improve the pharmacokinetic properties of ibrutinib. Pharmacokinetic studies were performed in wild-type mice and mice genetically engineered to lack all CYP3A isoforms (CYP3A−/−) that received ibrutinib alone or in combination with CYP3A inhibitors cobicistat or ketoconazole. Computational modeling was performed to derive doses of ibrutinib that, when given after a CYP3A inhibitor, results in therapeutically relevant drug levels. Deficiency of CYP3A in mice was associated with an approximately 10-fold increase in the AUC of ibrutinib. This result could be phenocopied by administration of cobicistat before ibrutinib in wild-type mice, but cobicistat did not influence levels of ibrutinib in CYP3A−/− mice. Population pharmacokinetic and prospectively validated physiologically based pharmacokinetic models established preclinical and clinical doses of ibrutinib that could be given safely in combination with cobicistat without negatively affecting antileukemic properties. These findings signify a dominant role for CYP3A-mediated metabolism in the elimination of ibrutinib, and suggest a role for pharmacologic inhibitors of this pathway to intentionally modulate the plasma levels and improve the therapeutic use of this clinically important agent. Significance: Ibrutinib has limited oral bioavailability, which contributes to significant interindividual pharmacokinetic variability. Using engineered mouse models, we here report a causal relationship between CYP3A-mediated metabolism and ibrutinib's bioavailability and drug–drug interaction with cobicistat. These results offer a mechanistic basis for reported pharmacokinetic interactions with ibrutinib, and in conjunction with a newly developed computational model, allow for the rational design of clinical trials aimed at improving the therapeutic use of ibrutinib.


1999 ◽  
Vol 65 (3) ◽  
pp. 1092-1098 ◽  
Author(s):  
Pavel Kotrba ◽  
Lucie Dolečková ◽  
Víctor de Lorenzo ◽  
Tomas Ruml

ABSTRACT Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane ofE. coli. Isolated cell envelopes of E. colibearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.


2021 ◽  
Vol 23 (1) ◽  
pp. 219-228
Author(s):  
Nabanita Saikia ◽  
Mohamed Taha ◽  
Ravindra Pandey

The rational design of self-assembled nanobio-molecular hybrids of peptide nucleic acids with single-wall nanotubes rely on understanding how biomolecules recognize and mediate intermolecular interactions with the nanomaterial's surface.


2020 ◽  
Vol 8 (35) ◽  
pp. 18207-18214
Author(s):  
Dongbo Jia ◽  
Lili Han ◽  
Ying Li ◽  
Wenjun He ◽  
Caichi Liu ◽  
...  

A novel, rational design for porous S-vacancy nickel sulfide catalysts with remarkable catalytic performance for alkaline HER.


Sign in / Sign up

Export Citation Format

Share Document