scholarly journals Investigation and Application of Bacillus licheniformis Volatile Compounds for the Biological Control of Toxigenic Aspergillus and Penicillium spp

ACS Omega ◽  
2019 ◽  
Vol 4 (17) ◽  
pp. 17186-17193 ◽  
Author(s):  
Zahoor Ul Hassan ◽  
Roda Al Thani ◽  
Hajer Alnaimi ◽  
Quirico Migheli ◽  
Samir Jaoua
2020 ◽  
Vol 12 (10) ◽  
pp. 295
Author(s):  
Renata F. Barabasz ◽  
Rayssa H. da Silva ◽  
Monica C. Sustakowski ◽  
Odair J. Kuhn ◽  
Jeferson C. Carvalho ◽  
...  

This work aimed to evaluate the effect of the yeasts Candida albicans, Pichia guilliermondii, Rhodotorula glutinis, Saccharomyces cerevisiae and Zygoascus hellenicus in the control of anthracnose in cucumbers. The influence of volatile and non-volatile compounds on mycelial growth and the effect of cell suspension and culture filtrate on conidial germination were evaluated. In a greenhouse, yeasts were tested on cucumber cotyledons, one cotyledon being treated and the other not; afterwards both cotyledons were challenged with C. orbiculare. The severity of the disease in both cotyledons was assessed by determining biological control and resistance induction. The production of volatile compounds from the yeasts R. glutinis and C. albicans reduced the pathogen growth by 90.7 and 90.0%, respectively. The production of non-volatile compounds stimulated the pathogen development. Conidia germination was affected when exposed to cell suspension of all tested isolates, ranging from 43 to 75%. For the culture filtrate from Z. hellenicus, it reduced the conidia germination by 11.4%. In the in vivo test, on the treated cotyledon, the yeasts Z. hellenicus, R. glutinis and S. cerevisiae reduced the anthracnose severity by 52.5, 50.0 and 42.5%, respectively.


2022 ◽  
Author(s):  
Yunpeng Wang ◽  
Xiaoli Wang ◽  
Jingfeng Zhu ◽  
Huan Wei ◽  
Zhipeng Ding ◽  
...  

2020 ◽  
Vol 9 (37) ◽  
Author(s):  
Julien Crovadore ◽  
Bastien Cochard ◽  
Damien Grizard ◽  
Romain Chablais ◽  
Marine Baillarguet ◽  
...  

ABSTRACT Bacillus licheniformis is a well-known industrial bacterium. New strains show interesting properties of biostimulants and biological control agents for agriculture. Here, we report the draft genome sequence, obtained with an Illumina MiniSeq system, of strain UASWS1606 of the bacterium Bacillus licheniformis, which is being developed as an agricultural biostimulant.


2005 ◽  
Vol 51 (7) ◽  
pp. 591-598 ◽  
Author(s):  
Hassan-Reza Etebarian ◽  
Peter L Sholberg ◽  
Kenneth C Eastwell ◽  
Ronald J Sayler

Pseudomonas fluorescens isolate 1100-6 was evaluated as a potential biological control agent for apple blue mold caused by Penicillium expansum or Penicillium solitum. Both the wild-type isolate 1100-6 and a genetically modified derivative labeled with the gene encoding the green fluorescent protein (GFP) were compared. The P. fluorescens isolates with or without GFP equally reduced the growth of Penicillium spp. and produced large zones of inhibition in dual culture plate assays. Cell-free metabolites produced by the bacterial antagonists reduced the colony area of Penicillium isolates by 17.3% to 78.5%. The effect of iron chelate on the antagonistic potential of P. fluorescens was also studied. The use of iron chelate did not have a major effect on the antagonistic activity of P. fluorescens. With or without GFP, P. fluorescens significantly reduced the severity and incidence of apple decay by 2 P. expansum isolates after 11 d at 20 °C and by P. expansum and P. solitum after 25 d at 5 °C when the biocontrol agents were applied in wounds 24 or 48 h before challenging with Penicillium spp. Populations of P. fluorescens labeled with the GFP were determined 1, 9, 14, and 20 d after inoculation at 5 °C. The log CFU/mL per wound increased from 6.95 at the time of inoculation to 9.12 CFU/mL (P < 0.05) 25 d after inoculation at 5 °C. The GFP strain did not appear to penetrate deeply into wounds based on digital photographs taken with an inverted fluorescence microscope. These results indicate that P. fluorescens isolate 1100-6 could be an important new biological control for apple blue mold.Key words: Penicillium expansum, P. solitum, postharvest disease, Malus, GFP.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3519 ◽  
Author(s):  
Yuxuan Liu ◽  
Huan Cheng ◽  
Huiyan Liu ◽  
Ruoshuang Ma ◽  
Jiangtao Ma ◽  
...  

Microorganisms can be used for enhancing flavors or metabolizing functional compounds. The fermented-food-derived bacterial strains comprising Bacillus velezensis, Bacillus licheniformis, and Lactobacillus reuteri mixed with Lactobacillus rhamnosus and Lactobacillus plantarum were used to ferment goji berry (Lycium barbarum L.) juice in this study. The fermentation abilities and antioxidant capacities of different mixtures of multiple strains in goji juice were compared. The results showed that the lactic acid contents increased 9.24–16.69 times from 25.30 ± 0.71 mg/100 mL in goji juice fermented using the SLV (Lactobacillus rhamnosus, Lactobacillus reuteri, and Bacillus velezensis), SZP (Lactobacillus rhamnosus, Lactobacillus plantarum, and Bacillus licheniformis), and SZVP (Lactobacillus rhamnosus, Lactobacillus plantarum, Bacillus velezensis, and Bacillus licheniformis) mixtures, and the protein contents increased 1.31–2.11 times from 39.23 ± 0.67 mg/100 mL. In addition, their contents of volatile compounds increased with positive effects on aroma in the fermented juices. Conversion of the free and bound forms of phenolic acids and flavonoids in juice was influenced by fermentation, and the antioxidant capacity improved significantly. Fermentation enhanced the contents of lactic acid, proteins, volatile compounds, and phenols. The antioxidant capacity was strongly correlated with the phenolic composition.


2017 ◽  
Vol 38 (3) ◽  
pp. 1251 ◽  
Author(s):  
Douglas Casaroto Peitl ◽  
Felipe Andre Araujo ◽  
Ricardo Marcelo Gonçalves ◽  
Ciro Hideki Sumida ◽  
Maria Isabel Balbi-Peña

Bacterial spot of tomato, caused by Xanthomonas spp., is a common disease in tomato fields that causes significant economic losses. Due to the difficulty with control of bacterial spot by conventional methods, new techniques such as biological control and induction of resistance are gaining prominence. This study aimed to select saprobe fungi from semi-arid regions of the Brazilian Northeast for the biological control of bacterial spot of tomato. To select the best isolates to control bacterial spot, a greenhouse experiment was initially conducted. Tomato plants (‘Santa Cruz Kada’) were treated with filtrates of 25 saprobe fungi and inoculated three days later with Xanthomonas euvesicatoria. Filtrates of Memnoniella levispora, Periconia hispidula, Zygosporium echinosporum, and Chloridium virescens var. virescens were selected as the most effective. Filtrates and volatile compounds from these four isolates were tested for their antibacterial activity in cultures of X. euvesicatoria and in tomato plants (‘Santa Cruz Kada’) inoculated with X. euvesicatoria. In vitro, the addition of nonvolatile fungal metabolites into the culture medium at 5% and 50% (v/v) inhibited bacterial growth by 28.9% and 53.8%, respectively. The volatile compounds produced by C. virescens var. virescens reduced the number of colony-forming units of X. euvesicatoria by 25.9%. In vivo, all treatments reduced from 62.4 to 71.3% the area under bacterial spot progress curve, showing the same control efficacy as the commercial resistance inducer used as a positive control (acibenzolar-S-methyl). Systemicity of the fungal filtrates was confirmed in a separate experiment, where application of the treatments exclusively to the third leaf decreased the severity of the disease on the fourth leaf (except for C. virescens var. virescens). These results show that M. levispora, P. hispidula, Z. echinosporum, and C. virescens var. virescens are potential biocontrol agents against bacterial spot of tomato. Further studies are necessary to elucidate the disease control mechanisms of saprobe fungi.


2015 ◽  
Vol 175 (7) ◽  
pp. 3494-3506 ◽  
Author(s):  
Imen Ben Slimene ◽  
Olfa Tabbene ◽  
Dorra Gharbi ◽  
Bacem Mnasri ◽  
Jean Marie Schmitter ◽  
...  

2006 ◽  
Vol 37 (3) ◽  
pp. 329-337 ◽  
Author(s):  
Jae Pil Lee ◽  
Seon-Woo Lee ◽  
Choul Sung Kim ◽  
Ji Hee Son ◽  
Ju Hee Song ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1062
Author(s):  
Caroline De Clerck ◽  
Manon Genva ◽  
M. Haissam Jijakli ◽  
Marie-Laure Fauconnier

Plants containing essential oils have been used for centuries as spices, remedies or for their pleasant odor [...]


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


Sign in / Sign up

Export Citation Format

Share Document