scholarly journals Total Utilization of Miscanthus Biomass, Lignin and Carbohydrates, Using Earth Abundant Nickel Catalyst

2016 ◽  
Vol 4 (4) ◽  
pp. 2316-2322 ◽  
Author(s):  
Hao Luo ◽  
Ian M. Klein ◽  
Yuan Jiang ◽  
Hanyu Zhu ◽  
Baoyuan Liu ◽  
...  
2018 ◽  
Vol 16 (2) ◽  
pp. 274-284 ◽  
Author(s):  
Seuli Parua ◽  
Rina Sikari ◽  
Suman Sinha ◽  
Siuli Das ◽  
Gargi Chakraborty ◽  
...  

A general, efficient and environmentally benign, one-step synthesis of substituted quinoline derivatives was achieved by acceptorless dehydrogenative coupling of o-aminobenzylalcohols with ketones and secondary alcohols catalyzed by a cheap, earth abundant and easy to prepare macrocyclic nickel catalyst [Ni(MeTAA)].


2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


2018 ◽  
Author(s):  
Peter George Gordon ◽  
Goran Bacic ◽  
Gregory P. Lopinski ◽  
Sean Thomas Barry

Al-doped ZnO (AZO) is a promising earth-abundant alternative to Sn-doped In<sub>2</sub>O<sub>3</sub> (ITO) as an n-type transparent conductor for electronic and photovoltaic devices; AZO is also more straightforward to deposit by atomic layer deposition (ALD). The workfunction of this material is particularly important for the design of optoelectronic devices. We have deposited AZO films with resistivities as low as 1.1 x 10<sup>-3</sup> Ωcm by ALD using the industry-standard precursors trimethylaluminum (TMA), diethylzinc (DEZ), and water at 200<sup>◦</sup>C. These films were transparent and their elemental compositions showed reasonable agreement with the pulse program ratios. The workfunction of these films was measured using a scanning Kelvin Probe (sKP) to investigate the role of aluminum concentration. In addition, the workfunction of AZO films prepared by two different ALD recipes were compared: a “surface” recipe wherein the TMA was pulsed at the top of each repeating AZO stack, and a interlamellar recipe where the TMA pulse was introduced halfway through the stack. As aluminum doping increases, the surface recipe produces films with a consistently higher workfunction as compared to the interlamellar recipe. The resistivity of the surface recipe films show a minimum at a 1:16 Al:Zn atomic ratio and using an interlamellar recipe, minimum resistivity was seen at 1:19. The film thicknesses were characterized by ellipsometry, chemical composition by EDX, and resistivity by four-point probe.<br>


1982 ◽  
Vol 47 (12) ◽  
pp. 3230-3235 ◽  
Author(s):  
Olga Marholová ◽  
Karel Smrček

A hydrophobic porous hydrogen anode was prepared whose electrochemical parameters are comparable with anodes containing a platinum catalyst. For its successful preparation, oxidation of the Raney nickel catalyst with air oxygen or with fluorine from Teflon must be prevented. The electrodes of a geometric surface area up to 450 cm2 were tested in cells and modules filled with 7M-KOH.


1998 ◽  
Vol 63 (11) ◽  
pp. 1945-1953 ◽  
Author(s):  
Jiří Hanika ◽  
Karel Sporka ◽  
Petr Macoun ◽  
Vladimír Kysilka

The activity of ruthenium, palladium, and nickel catalysts for the hydrogenation of 1,2-dihydroacenaphthylene in cyclohexane solution was studied at temperatures up to 180 °C and pressures up to 8 MPa. The GC-MS technique was used to identify most of the perhydroacenaphthylene stereoisomers, whose fractions in the product were found dependent on the nature of the active component of the catalyst. The hydrogenation was fastest on the palladium catalyst (3% Pd/C). The nickel catalyst Ni-NiO/Al2O3, which is sufficiently active also after repeated use, can be recommended for practical application. The activation energy of 1,2-dihydroacenaphthylene hydrogenation using this catalyst is 17 kJ/mol, the reaction order with respect to hydrogen is unity.


Polyhedron ◽  
2018 ◽  
Vol 154 ◽  
pp. 252-258
Author(s):  
Yasmeen Hameed ◽  
Sarah Ouanounou ◽  
Titel Jurca ◽  
Bulat Gabidullin ◽  
Ilia Korobkov ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6538) ◽  
pp. 175-182
Author(s):  
Hairong Lyu ◽  
Ilia Kevlishvili ◽  
Xuan Yu ◽  
Peng Liu ◽  
Guangbin Dong

Mild methods to cleave the carbon-oxygen (C−O) bond in alkyl ethers could simplify chemical syntheses through the elaboration of these robust, readily available precursors. Here we report that dibromoboranes react with alkyl ethers in the presence of a nickel catalyst and zinc reductant to insert boron into the C−O bond. Subsequent reactivity can effect oxygen-to-nitrogen substitution or one-carbon homologation of cyclic ethers and more broadly streamline preparation of bioactive compounds. Mechanistic studies reveal a cleavage-then-rebound pathway via zinc/nickel tandem catalysis.


Sign in / Sign up

Export Citation Format

Share Document