Structure and Mechanism of Titania-Supported Platinum–Molybdenum Catalyst for Hydrodeoxygenation of 2-Furancarboxylic Acid to Valeric Acid

2019 ◽  
Vol 7 (10) ◽  
pp. 9601-9612 ◽  
Author(s):  
Takehiro Asano ◽  
Yoshinao Nakagawa ◽  
Masazumi Tamura ◽  
Keiichi Tomishige
1980 ◽  
Vol 45 (10) ◽  
pp. 2728-2741 ◽  
Author(s):  
Pavel Fott ◽  
Petr Schneider

Kinetics have been studied of the reaction system taking place during the reaction of thiophene on the cobalt-molybdenum catalyst in a gradientless circulation flow reactor at 360 °C and atmospheric pressure. Butane has been found present in a small amount in the reaction products even at very low conversion. In view of this, consecutive and parallel-consecutive (triangular) reaction schemes have been proposed. In the former scheme the appearance of butane is accounted for by rate of desorption of butene being comparable with the rate of its hydrogenation. According to the latter scheme part of the butane originates from thiophene via a different route than through hydrogenation of butene. Analysis of the kinetic data has revealed that the reaction of thiophene should be considered to take place on other active sites than that of butene. Kinetic equations derived on this assumption for the consecutive and the triangular reaction schemes correlate experimental data with acceptable accuracy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2512
Author(s):  
Daming Zheng ◽  
Changheng Tong ◽  
Tao Zhu ◽  
Yaoguang Rong ◽  
Thierry Pauporté

During the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has risen rapidly, and it now approaches the record for single crystal silicon solar cells. However, these devices still suffer from a problem of stability. To improve PSC stability, two approaches have been notably developed: the use of additives and/or post-treatments that can strengthen perovskite structures and the use of a nontypical architecture where three mesoporous layers, including a porous carbon backcontact without hole transporting layer, are employed. This paper focuses on 5-ammonium valeric acid iodide (5-AVAI or AVA) as an additive in methylammonium lead iodide (MAPI). By combining scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence (TRPL), current–voltage measurements, ideality factor determination, and in-depth electrical impedance spectroscopy (EIS) investigations on various layers stacks structures, we discriminated the effects of a mesoscopic scaffold and an AVA additive. The AVA additive was found to decrease the bulk defects in perovskite (PVK) and boost the PVK resistance to moisture. The triple mesoporous structure was detrimental for the defects, but it improved the stability against humidity. On standard architecture, the PCE is 16.9% with the AVA additive instead of 18.1% for the control. A high stability of TiO2/ZrO2/carbon/perovskite cells was found due to both AVA and the protection by the all-inorganic scaffold. These cells achieved a PCE of 14.4% in the present work.


2006 ◽  
Vol 155 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Toshiaki Matsui ◽  
Katsuhiko Fujiwara ◽  
Takeoh Okanishi ◽  
Ryuji Kikuchi ◽  
Tatsuya Takeguchi ◽  
...  

Author(s):  
Chaozhu Huang ◽  
Samira Adimi ◽  
Dongliang Liu ◽  
Haichuan Guo ◽  
Tiju Thomas ◽  
...  

Proton exchange membrane fuel cell gas sensor is a promising and novel gas sensing device. However, the poor sensitivity and strong cross sensitivity of commercial carbon-supported-platinum (Pt/C) remain obstacles to...


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20601-20611
Author(s):  
Md. Mijanur Rahman ◽  
Kenta Inaba ◽  
Garavdorj Batnyagt ◽  
Masato Saikawa ◽  
Yoshiki Kato ◽  
...  

Herein, we demonstrated that carbon-supported platinum (Pt/C) is a low-cost and high-performance electrocatalyst for polymer electrolyte fuel cells (PEFCs).


2021 ◽  
Vol 4 (4) ◽  
pp. 312-321
Author(s):  
Xiongjie Jin ◽  
Rio Tsukimura ◽  
Takeshi Aihara ◽  
Hiroki Miura ◽  
Tetsuya Shishido ◽  
...  

Author(s):  
Xin-Qian Gao ◽  
Wei Song ◽  
Wen-Cui Li ◽  
An-Hui Lu

Alumina nanosheet supported platinum-based catalysts exhibited excellent catalytic reactivity and stability with an anti-coke capacity in the isobutane dehydrogenation process due to the abundant defect sites and decreased acidity.


Sign in / Sign up

Export Citation Format

Share Document