Hydrophilic and Lipophilic Antioxidant Capacity in Foods: Measurement and In Vivo Implications

Author(s):  
Ronald L. Prior ◽  
Xianli Wu
2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
Julian Alfke ◽  
Uta Kampermann ◽  
Svetlana Kalinina ◽  
Melanie Esselen

AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.


2019 ◽  
Vol 91 ◽  
pp. 19-25 ◽  
Author(s):  
Michele Silveira Coelho ◽  
Sabrine de Araujo Aquino ◽  
Juliana Machado Latorres ◽  
Myriam de las Mercedes Salas-Mellado

2003 ◽  
Vol 177 (1) ◽  
pp. 137-146 ◽  
Author(s):  
L Oziol ◽  
P Faure ◽  
N Bertrand ◽  
P Chomard

Oxidized low density lipoproteins (LDL) are highly suspected of initiating the atherosclerosis process. Thyroid hormones and structural analogues have been reported to protect LDL from lipid peroxidation induced by Cu2+ or the free radical generator 2,2'-azobis-'2-amidinopropane' dihydrochloride in vitro. We have examined the effects of thyroid compounds on macrophage-induced LDL oxidation. Human monocyte-derived macrophages (differentiated U937 cells) were incubated for 24 h with LDL and different concentrations (0-20 microM) of 3,5,3'-triiodo-l -thyronine (T3), 3,5,3',5'-tetraiodo-L-thyronine (T4), 3,3',5'-tri-iodo-l -thyronine (rT3), the T3 acetic derivative (3,5,3'-tri-iodothyroacetic acid; TA3) or L-thyronine (T0) (experiment 1). Cells were also preincubated for 24 h with 1 or 10 microM of the compounds, washed twice, then incubated again for 24 h with LDL (experiment 2). Oxidation was evaluated by measurement of thiobarbituric acid-reactive substances (TBARS) and cell viability by lactate deshydrogenase release. In experiment 1, T0 had no effect, whereas the other compounds decreased LDL TBARS production, but T3 and TA3 were less active than T4 and rT3 (IC50: 11.0 +/- 2.6 and 8.1 +/- 0.8 vs 1.4 +/- 0.5 and 0.9 +/- 0.3 microM respectively). In experiment 2, the compounds at 1 microM had no effect; at 10 microM, T3 and rT3 slightly reduced LDL TBARS production, whereas TA3 and T4 inhibited it by about 50% and 70% respectively. TBARS released by the cells were also highly decreased by T3, T4, rT3 and TA3 in experiment 1, but only by T3 (30%) and T4 (70%) in experiment 2. Cell viability was not affected by the compounds except slightly by TA3 at 10 microM. The data suggested that the physico-chemical antioxidant capacity of thyroid compounds was modulated by their action on the intracellular redox systems of macrophage. Overall cellular effects of T3 led to a reduction of its antioxidant capacity whereas those of T4 increased it. Thus T4 might protect LDL against cellular oxidation in vivo more than T3.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
María López-Pedrouso ◽  
José M. Lorenzo ◽  
Paula Borrajo ◽  
Daniel Franco

The search for antioxidant peptides as health-promoting agents is of great scientific interest for their biotechnological applications. Thus, the main goal of this study was to identify antioxidant peptides from pork liver using alcalase, bromelain, flavourzyme, and papain enzymes. All liver hydrolysates proved to be of adequate quality regarding the ratio EAA/NEAA, particularly flavourzyme hydrolysates. The peptidomic profiles were significantly different for each enzyme and their characterizations were performed, resulting in forty-four differentially abundant peptides among the four treatments. Porcine liver hydrolysates from alcalase and bromelain are demonstrated to have the most antioxidant capacity. On the other hand, hydrophobic amino acid residues (serine, threonine, histidine and aspartic acid) might be reducing the hydrolysates antioxidant capacity. Seventeen peptides from collagen, albumin, globin domain-containing protein, cytochrome β, fructose-bisphosphate aldolase, dihydropyrimidinase, argininosuccinate synthase, and ATP synthase seem to be antioxidant. Further studies are necessary to isolate these peptides and test them in in vivo experiments.


2020 ◽  
Vol 322 ◽  
pp. 126783 ◽  
Author(s):  
Débora P. Moraes ◽  
Jesús Lozano-Sánchez ◽  
Marina L. Machado ◽  
Márcia Vizzotto ◽  
Micheli Lazzaretti ◽  
...  

Author(s):  
Oskar Szczepaniak ◽  
Judyta Cielecka-Piontek ◽  
Joanna Kobus-Cisowska

Abstract Cornelian cherry (Cornus mas L.) is a plant growing in Central and Eastern Europe. Its fruits are a rich source of anthocyanins, flavonoids and iridoids. Among the iridoids, loganic acid is the most prevalent. The study aimed to examine the relation between loganic acid content, antioxidant capacity and hypoglycaemic effect in vivo for three Polish cultivars of C. mas. All tested cultivars strongly inhibited α-glucosidase and had similar amounts of highly bioabsorbable loganic acid. The loganic acid content was similar for each cultivar tested, while the cultivars differed in content of flavonoids and anthocyanins. The highest antioxidant potential was observed in the fruits of cv. Szafer, and the highest α-glucosidase inhibitor was cv. P5. A statistical analysis has shown that hypoglycaemic properties are prevalently driven by anthocyanin content and the antioxidant capacity, especially ferric-reducing ability partially based on loganic acid.


Author(s):  
Sunday Olakunle Idowu ◽  
Amos Akintayo Fatokun

Oxidative stress induced by excessive levels of reactive oxygen species (ROS) underlies several diseases. Therapeutic strategies to combat oxidative damage are, therefore, a subject of intense scientific investigation to prevent and treat such diseases, with the use of phytochemical antioxidants, especially polyphenols, being a major part. Polyphenols, however, exhibit structural diversity that determines different mechanisms of antioxidant action, such as hydrogen atom transfer (HAT) and single-electron transfer (SET). They also suffer from inadequate in vivo bioavailability, with their antioxidant bioactivity governed by permeability, gut-wall and first-pass metabolism, and HAT-based ROS trapping. Unfortunately, no current antioxidant assay captures these multiple dimensions to be sufficiently “biorelevant,” because the assays tend to be unidimensional, whereas biorelevance requires integration of several inputs. Finding a method to reliably evaluate the antioxidant capacity of these phytochemicals, therefore, remains an unmet need. To address this deficiency, we propose using artificial intelligence (AI)-based machine learning (ML) to relate a polyphenol’s antioxidant action as the output variable to molecular descriptors (factors governing in vivo antioxidant activity) as input variables, in the context of a biomarker selectively produced by lipid peroxidation (a consequence of oxidative stress), for example F2-isoprostanes. Support vector machines, artificial neural networks, and Bayesian probabilistic learning are some key algorithms that could be deployed. Such a model will represent a robust predictive tool in assessing biorelevant antioxidant capacity of polyphenols, and thus facilitate the identification or design of antioxidant molecules. The approach will also help to fulfill the principles of the 3Rs (replacement, reduction, and refinement) in using animals in biomedical research.


Sign in / Sign up

Export Citation Format

Share Document