Electrospun Nanofibrous Mats Containing Quaternized Chitosan and Polylactide with In Vitro Antitumor Activity against HeLa Cells

2010 ◽  
Vol 11 (6) ◽  
pp. 1633-1645 ◽  
Author(s):  
Milena G. Ignatova ◽  
Nevena E. Manolova ◽  
Reneta A. Toshkova ◽  
Iliya B. Rashkov ◽  
Elena G. Gardeva ◽  
...  
2012 ◽  
Vol 22 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Ningyue Gan ◽  
Gang Chen ◽  
Weijiang Zhang ◽  
Jianwei Zhou

ObjectivePlants belonging to the genus Celastrus exhibit antitumor activity and the ability to reverse multidrug resistance in tumor cells; however, it remains unclear whether the compound oleanen from Celastrus hypoleucus also exhibits antitumor activity. The objective of this study was to explore the inhibitory effect of 12-oleanene-3β, 6α-diol (oleanen) on the proliferation of cervical cancer HeLa cells in vitro, as well as its relative mechanism.MethodsHeLa cells were treated with different concentrations of oleanen for different times. Cell proliferation was determined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay. Cell apoptosis was evaluated by flow cytometry and caspases activities assay. The expression of several proapoptotic proteins belonging to the Bcl-2 family, such as Bax, Bim, and Bad, was detected by Western blot.ResultsOleanen mainly inhibited the proliferation of HeLa cells at the G0 to G1 and G2 to M phases, and the IC50 of oleanen for cells was significantly higher at 24 hours compared to 48 hours (17.45 ± 3.71 vs 9.02 ± 0.83 μg/mL, respectively; P < 0.05). The significant increase in activity of caspase 3/7, caspase 6 in oleanen-treated HeLa cells indicated that oleanen promoted the apoptosis of HeLa cells. The activity of caspase 9 representing the endogenous apoptotic pathways also increased obviously in oleanen treatment. Furthermore, the increase in the expression of Bim was the most significant among the Bcl-2 family after oleanen treatment.ConclusionOleanen up-regulates the expression of Bim and other proapoptotic molecules to activate the endogenous apoptosis pathway, thus promoting apoptosis and inhibiting proliferation of human cervical cancer HeLa cells in vitro.


2016 ◽  
Vol 14 (6) ◽  
pp. 5164-5170 ◽  
Author(s):  
Geling Teng ◽  
Yuanrong Ju ◽  
Yepeng Yang ◽  
Hu Hua ◽  
Jingyu Chi ◽  
...  

2014 ◽  
Vol 9 (4) ◽  
pp. 1313-1318 ◽  
Author(s):  
NIAN XIN ◽  
MURTAZA HASAN ◽  
WEI LI ◽  
YAN LI

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Cao ◽  
Hong Zhang ◽  
Jie Guo ◽  
Xiao-hui Liu ◽  
Chang Liu ◽  
...  

Objectives. Hua-Zheng-Hui-Sheng-Dan (HZHSD) was used as an experimental model to explore research methods of large formulae in traditional Chinese medicine (TCM) using current molecular biology approaches.Materials and Methods. The trypan blue exclusion assay was used to determine cell viability and cell numbers. Flow cytometry was used to assess cell cycle distribution and apoptosis. The concentration of cyclin D1 was analyzed by enzyme-linked immunosorbent assay. The median effect principle was used in drug combination studies. An orthogonal experimental design was used to estimate the effects of each herb at different concentrations. The HeLa xenograft mouse model was used to compare the antitumor activity of drugs in vivo.Results. Among the 35 herbs that comprise HZHSD, Radix Rehmanniae Preparata (RRP),Caesalpinia sappan(CS),Evodia rutaecarpa(ER), Folium Artemisiae Argyi (FAA),Leonurus japonicusHoutt (LJH), Tumeric (Tu), Radix Paeoniae Alba (RPA), and Trogopterus Dung (TD) effectively inhibited the proliferation of HeLa and SKOV3 cells. Only RRR had an effect on HeLa and SKOV3 cell viability. According to the median effect principle,Angelica sinensis(Oliv.) (AS),Tabanus(Ta), and Pollen Typhae (PT), which were proven to have a significant synergistic inhibitory effect on the proliferation of HeLa cells, were added to the original eight positive herbs. The combination of RPA and AS had a synergistic effect on inducing cell cycle S phase arrest and decreasing intracellular cyclin D1 in HeLa cells. By orthogonal experimental design, LJH and Tu were considered unnecessary herbs. The small formula (SHZHSD) consisted of RPA, AS, RRR, Ta., TD, PT, ER, CS, and FAA and was able to inhibit cell proliferation and induce cell apoptosis. The antitumor effects of HZHSD and SHZHSD were also compared in vivo.Conclusions. Through molecular biology approaches both in vitro and in vivo, research into single drugs, and analysis using the median effect principle and orthogonal experimental design, the small formula (SHZHSD) was determined from the original formula (HZHSD). SHZHSD exhibited superior antitumor activity compared with the original formula both in vitro and in vivo.


Peptides ◽  
2010 ◽  
Vol 31 (6) ◽  
pp. 1019-1025 ◽  
Author(s):  
Ming-Ching Lin ◽  
Shih-Bin Lin ◽  
Jian-Chyi Chen ◽  
Cho-Fat Hui ◽  
Jyh-Yih Chen

2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


2019 ◽  
Vol 19 (13) ◽  
pp. 1075-1091 ◽  
Author(s):  
Karla Mirella Roque Marques ◽  
Maria Rodrigues do Desterro ◽  
Sandrine Maria de Arruda ◽  
Luiz Nascimento de Araújo Neto ◽  
Maria do Carmo Alves de Lima ◽  
...  

Background: Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. Objective: Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. Methods: Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). Results: Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. Conclusion: Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.


2019 ◽  
Vol 16 (6) ◽  
pp. 462-467
Author(s):  
Songtao Li ◽  
Hongling Zhao ◽  
Zhifeng Yin ◽  
Shuhua Deng ◽  
Yang Gao ◽  
...  

A series of new phenanthrene-based tylophorine derivatives (PBTs) were synthesized in good yield and their structures were characterized by 1H-NMR spectroscopy and ESI MS. In vitro antitumor activity of these compounds against five human carcinoma cell lines, including HCT116 (colorectal), BGC-823 (gastric), HepG-2 (hepatic), Hela (cervical) and H460 (lung) cells, was evaluated by MTT assay. Among these PBTs, compound 6b showed the highest antitumor activities against HCT116 and HepG-2 cell lines with IC50 values of 6.1 and 6.4 μM, respectively, which were comparable to that of adriamycin hydrochloride. The structure-activity relationship of these compounds was also discussed based on the results of their antitumor activity.


Sign in / Sign up

Export Citation Format

Share Document