In Vitro Assessment of the Bioaccessibility of Fatty Acids and Tocopherol from Soybean Oil Body Emulsions Stabilized with ι-Carrageenan

2012 ◽  
Vol 60 (6) ◽  
pp. 1567-1575 ◽  
Author(s):  
Na-Na Wu ◽  
Xu Huang ◽  
Xiao-Quan Yang ◽  
Jian Guo ◽  
Shou-Wei Yin ◽  
...  
2016 ◽  
Vol 56 (3) ◽  
pp. 627 ◽  
Author(s):  
Mengzhi Wang ◽  
Yujia Jing ◽  
Shimin Liu ◽  
Jian Gao ◽  
Liangfeng Shi ◽  
...  

This experiment examined which type of oils was a superior suppressor to methane mitigation in ruminants. Four oils, peanut, rapeseed, corn and soybean oils, varying in the contents of unsaturated fatty acids as indicated by their iodine values, were used to investigate their effects on methane production and on the content of the F420 enzyme of ruminal methanogens in an in vitro fermentation. The control group was added with calcium palmitate (100% saturated 16C fatty acid). The results showed that the total gas production over a period of 36 h varied from 20.61 mL to 39.67 mL, and were lower in rapeseed, corn and soybean oil treatments than the control (P < 0.05), but not in the peanut oil treatment. The methane concentration in the total gas differed significantly among groups (P < 0.05), and decreased with the increases of unsaturation degree of the oils. The coenzyme F420 content, as indicated by F420 fluorescence intensity in supernatant of the medium, was significantly lower in the oil treatments than in the control (P < 0.05), and the intensity values decreased with the increases of unsaturation degree of the oils, except for the rapeseed oil treatment. Furthermore, there was a close correlation between F420 content and methane production (r = 0.916). By comparison, soybean oil treatment had higher dehydrogenase activity and bacteria density than the other groups (P < 0.05); but was lower in methanogens and genus entodinium (P < 0.05), except for the rapeseed oil treatment. Overall, soybean oil contained a high level of unsaturated fatty acids, and could be used as an ingredient of ruminant diets for methane suppression.


2009 ◽  
Vol 57 (13) ◽  
pp. 5720-5726 ◽  
Author(s):  
Daniel A. White ◽  
Ian D. Fisk ◽  
Sakunkhun Makkhun ◽  
David A. Gray

Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
VK Manda ◽  
OR Dale ◽  
C Awortwe ◽  
Z Ali ◽  
IA Khan ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

2020 ◽  
Vol 36 (6) ◽  
pp. 35-48
Author(s):  
D.V. Коchkin ◽  
G.I. Sobolkovа ◽  
А.А. Fоmеnkov ◽  
R.А. Sidorov ◽  
А.М. Nоsоv

The physiological characteristics of the callus cell cultures of Alhagi persarum Boiss et Buhse, a member of the legume family, widely used in folk medicine, have been studied. It was shown that the source of the explant was an important factor in the initiation of callusogenesis: more intense callusogenesis (almost 100%) was observed for explants from various organs of sterile seedlings, rather than intact plants (less than 30%). As a result, more than 20 lines of morphologically different callus cell cultures were obtained, and the growth parameters for the 5 most intensively growing lines were determined. The composition of fatty acids (FA) of total lipids and secondary metabolites in the most physiologically stable callus line Aр-207 was analyzed. Using capillary gas-liquid chromatography with mass spectrometric detection (GLC-MS), 19 individual C12--C24 FAs were identified, the main fraction of which were palmitic (~ 23%), stearic (~ 22%), linoleic (~ 14%) and α-linolenic (~ 33%) acids. The established atypical ratio of FAs (a simultaneous high content of both saturated FAs and polyunsaturated α-linolenic acid) is possibly due to the adaptation of cells to in vitro growth conditions. Phytochemical analysis of the secondary metabolites was carried out using ultra-performance liquid chromatography with electrospray ionization mass spectrometric detection (UPLC MS). Compounds belonging to different structural groups of isoflavones were found. Aglycones (calycosin, formononetin and afrormosin isomer), glucosides (formononetin glucoside), as well as esters of glucosides (malonylglycosides of calicosin, formononetin, afrormosin isomers, glycitein and genistein) were detected. These secondary metabolites are widespread in plants of the Fabaceae family; however, isoflavones are rare in representatives of the Alhagi genus. The presence of malonylated isoflavone glycosides in Alhagi spp. was shown for the first time. endemic plant species, Alhagi, in vitro cell culture, callus cell culture, isoflavones, fatty acids All studies were carried out using the equipment of the "Experimental Biotechnological Facility" and the "All-Russian Collection of Cell Cultures of Higher Plants" of IРР RAS. This work was supported by the Russian Foundation for Basic Research (RFBR), contract no.18-54-06021 (Az_a), and the Government of the Russian Federation, Megagrant Project no. 075-15-2019-1882.


Sign in / Sign up

Export Citation Format

Share Document